cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A175953 Let a(1)=1; for n>1 a(n)=nextprime(a(n-1)+(a(n-1)+1)/4).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 17, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677, 853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289, 12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281, 120371, 150473
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 29 2010

Keywords

Comments

The following definition of nextprime(q) is used: if q is an integer and prime, nextprime(q)=q. If q is an integer and composite or rational, nextprime(q) is the smallest prime >q. [R. J. Mathar, Oct 30 2010]

Crossrefs

Programs

  • Maple
    nprime := proc(n) if type(n,'integer') then if isprime(n) then return n; else return nextprime(n) ; end if; else return nextprime(floor(n)) ; end if; end proc:
    A175953 := proc(n) option remember; if n= 1 then 1; else p := procname(n-1)+(procname(n-1)+1)/4 ; return nprime(p) ; end if; end proc:
    seq(A175953(n),n=1..120) ; # R. J. Mathar, Oct 30 2010

Extensions

More terms from R. J. Mathar, Oct 30 2010
Showing 1-1 of 1 results.