A089582 From Gilbreath's conjecture.
2, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0
Offset: 1
Examples
See the triangle in A036262.
References
- R. K. Guy, Unsolved Problems in Number Theory, 2nd Ed., Springer-Verlag, NY, Berlin, 1994, A10.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 410.
- P. Ribenboim, The new book of prime number records, 3rd edition, Springer-Verlag, New York, NY, pp. xxiv+541, ISBN 0-387-94457-5. 1995. MR 96k:11112
Links
- Chris Caldwell, The Prime Glossary, Goldbach's conjecture.
- Andrew M. Odlyzko, Iterated Absolute Values of Differences of Consecutive Primes, Math. Comp. 61 (1993), 373-380.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Eric Weisstein's World of Mathematics, Gilbreath's Conjecture.
Crossrefs
See A036262 for an abbreviated table of absolute differences.
Programs
-
Maple
A089582 := proc(n) A036262(n,2) ; end proc: seq(A089582(n),n=1..80) ; # R. J. Mathar, May 10 2023
-
Mathematica
mx = 105; lst = {}; t = Array[ Prime, mx+2]; Do[t = Abs@ Differences@ t; AppendTo[lst, t[[2]]], {n, mx}]; lst
Comments