cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089602 Expansion of L(x)^(1/4), where L(x) = o.g.f. for A053175.

This page as a plain text file.
%I A089602 #18 Sep 29 2019 08:47:34
%S A089602 1,2,14,132,1446,17340,220524,2919240,39761094,553080044,7818246436,
%T A089602 111929301688,1618972088028,23616939932376,346986771074328,
%U A089602 5129262870441360,76223971339368006,1137977844577647948,17058656523389665268,256642078290095158360,3873624648355421605492
%N A089602 Expansion of L(x)^(1/4), where L(x) = o.g.f. for A053175.
%H A089602 Seiichi Manyama, <a href="/A089602/b089602.txt">Table of n, a(n) for n = 0..834</a>
%F A089602 G.f.: (2*EllipticK(8*x/(1-8*x))/((1-8*x)*Pi))^(1/4).
%F A089602 a(n) ~ 2^(4*n - 7/4) / (Pi^(1/4) * n * log(n)^(3/4)) * (1 - (gamma/2 + log(2)) / log(n) + (3*gamma^2/8 + 3*log(2)*gamma/2 + 3*log(2)^2/2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Sep 29 2019
%t A089602 nmax = 25; CoefficientList[Series[(EllipticK[(8*x/(1 - 8*x))^2]/((1 - 8*x)*Pi/2))^(1/4), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 26 2019 *)
%o A089602 (PARI) Vec(1/agm(1,1-16*x+O(x^66))^(1/4)) \\ _Joerg Arndt_, Aug 14 2013
%Y A089602 Cf. A053175, A090004.
%K A089602 nonn
%O A089602 0,2
%A A089602 _Vladeta Jovovic_, Dec 30 2003