This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089664 #14 Oct 23 2023 11:16:55 %S A089664 0,4,41,306,1966,11540,63726,336700,1720364,8562024,41718190, %T A089664 199753004,942561636,4392660376,20253510956,92519626200,419201709976, %U A089664 1885719209936,8428262686254,37453751742604,165575219275700,728534225415864,3191850894862564 %N A089664 a(n) = S2(n,1), where S2(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^2. %H A089664 G. C. Greubel, <a href="/A089664/b089664.txt">Table of n, a(n) for n = 0..1000</a> %H A089664 Jun Wang and Zhizheng Zhang, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00206-1">On extensions of Calkin's binomial identities</a>, Discrete Math., 274 (2004), 331-342. %F A089664 a(n) = (1/8)*(n*(3*n+5)*4^n - 2*n*(n-1)*binomial(2*n, n)). (see Wang and Zhang, p. 338) %F A089664 From _G. C. Greubel_, May 25 2022: (Start) %F A089664 a(n) = (1/2)*( n*(3*n+5)*4^(n-1) - 3*binomial(n+1, 3)*Catalan(n) ). %F A089664 G.f.: x*(4*(1-x) - 3*x*sqrt(1-4*x))/(1-4*x)^3. %F A089664 E.g.f.: 2*x*(2 + 3*x)*exp(4*x) - (x^2/2)*(3*BesselI(0, 2*x) + 4*BesselI(1, 2*x) + BesselI(2, 2*x))*exp(2*x)). (End) %t A089664 Table[(n*(3*n+5)*4^n -2*n*(n-1)*Binomial[2*n,n])/8, {n,0,40}] (* _G. C. Greubel_, May 25 2022 *) %o A089664 (SageMath) [(1/2)*(n*(3*n+5)*4^(n-1) -3*binomial(n+1, 3)*catalan_number(n)) for n in (0..40)] # _G. C. Greubel_, May 25 2022 %o A089664 (PARI) a(n)=n*(3*n+5)*2^(2*n-3) - 3*binomial(n+1,3)*binomial(2*n,n)/(n+1)/2 \\ _Charles R Greathouse IV_, Oct 23 2023 %Y A089664 Sequences of S2(n, t): A003583 (t=0), this sequence (t=1), A089665 (t=2), A089666 (t=3), A089667 (t=4), A089668 (t=5). %Y A089664 Cf. A000108, A089658, A089669. %K A089664 nonn,easy %O A089664 0,2 %A A089664 _N. J. A. Sloane_, Jan 04 2004