This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089676 #107 Aug 15 2024 11:07:37 %S A089676 1,2,2,4,5,6,8,9,10,16,17 %N A089676 a(n) is the maximal size of a set S of points in {0,1}^n in real n-dimensional Euclidean space such that every angle determined by three points in S is acute. %C A089676 Consider the 2^n points {0,1}^n in real Euclidean space. Then a(n) = maximal size of a subset S of these 2^n points such that there is no triple of points P,Q,R in S which subtends a right angle. That is, we are not allowed to have P-Q perpendicular to R-Q. %C A089676 There is an existence proof due to Erdős and Füredi that exponentially large subsets S exist: see for example Theorem 2.3 of Noga Alon's survey "Probabilistic Methods in Extremal Finite Set Theory". This was improved by Bevan and later by Ackerman and Ben-Zwi. %C A089676 As explained by Erdős-Füredi, these sets of points are equivalent to set systems none of which is sandwiched between the intersection and the union of two others. In turn these are equivalent to so-called (2,1)-separating systems. As far as I know the best construction is the one in my Israel J. Math. 2013 paper. It uses algebraic geometry and coding techniques, and it implies a lower bound on a(n) of roughly 11^{3n/50}. This is better than Erdős-Füredi, Bevan, or Ackerman-Ben-Zwi, which are all about (4/3)^{n/2}. It is remarkable that this construction beats the probabilistic method (and note that it implies that for large n, naive computer search will have exponentially small chance to find optimal configurations). I should also add that Erdős-Füredi claimed (without proof) a lower bound of 2^{n/4} which, if correct, would be even better (but also non-constructive). - Hugues Randriambololona, Apr 08 2016 %C A089676 For a(10)=17 a combinatorial search algorithm shows that a cubic acute 10-set with 18 vertices is not possible. For a complete enumeration of sets with maximal size, see A289972. - _Fausto A. C. Cariboni_, Jul 17 2017 %C A089676 The best known lower bounds for a(11-15) are 24, 32, 33, 64 and 128. a(11-14) were found by D. Kamenetsky, while a(15) was found by D. Kamenetsky and V. Chubenko (see attached file). Lower bounds for n > 15 have been found by V. Harangi (see Table 3 in his paper). - _Dmitry Kamenetsky_, May 18 2018 and Jun 05 2018 %H A089676 Eyal Ackerman and Oren Ben-Zwi, <a href="https://doi.org/10.1016/j.ejc.2008.07.020">On sets of points that determine only acute angles</a>, European Journal of Combinatorics 30 (2009) 908-910. %H A089676 N. Alon, <a href="http://www.cs.tau.ac.il/~nogaa/PDFS/set3.pdf">Probabilistic Methods in Extremal Finite Set Theory</a> %H A089676 D. Bevan, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r12">Sets of Points Determining Only Acute Angles and Some Related Coloring Problems</a>, Electronic J. of Combinatorics, 13(1), 2006, #R12. %H A089676 L. Danzer and B. Grünbaum, <a href="http://dx.doi.org/10.1007/BF01193107">Uber zwei Probleme bezüglich konvexer Körper von P. Erdős und von K. L. Klee</a>, Math. Zeitschrift 79 (1962) 95-99. %H A089676 P. Erdős and Z. Füredi, <a href="http://dx.doi.org/10.1016/S0304-0208(08)73398-X">The greatest angle among n points in the d-dimensional Euclidean space</a>, Annals of Discrete Math. 17 (1983) 275-283. %H A089676 Viktor Harangi, <a href="https://users.renyi.hu/~harangi/papers/acute.pdf">Acute Sets In Euclidean Spaces</a>, Journal on Discrete Mathematics, volume 25, issue 3, (2011) 1212-1229. %H A089676 Dmitry Kamenetsky, <a href="/A089676/a089676_1.txt">Lower bounds and their solutions for a(11-15)</a> %H A089676 Math StackExchange, <a href="https://math.stackexchange.com/questions/2363546/tight-acute-sets">Tight Acute Sets</a> %H A089676 Hugues Randriambololona, <a href="https://doi.org/10.1007/s11856-012-0126-9">(2,1)-Separating systems beyond the probabilistic bound</a>, Israel Journal of Mathematics, 195 (2013), 171-186; DOI: 10.1007/s11856-012-0126-9. %H A089676 Hugues Randriambololona, <a href="https://arxiv.org/abs/1010.5764">(2,1)-Separating systems beyond the probabilistic bound</a>, arXiv:1010.5764 [math.CO], 2010-2012. %F A089676 If k <= m <= n, a(k+2m) >= a(k)a(m), a(k+2m+3n) >= a(k)a(m)a(n). %F A089676 a(n) >= 2*floor((sqrt(6)/9)(2/sqrt(3))^n), which is approximately 0.544*1.155^n. %e A089676 a(3) = 4: {000, 011, 101, 110}. %e A089676 a(4) = 5: {0011, 0101, 0110, 1000, 1111}. %e A089676 The following sets are given by Bevan (2006), who also shows they are optimal: %e A089676 a(5) = 6: %e A089676 0 0 0 0 0 %e A089676 0 0 0 1 1 %e A089676 0 0 1 0 1 %e A089676 0 1 0 0 1 %e A089676 1 0 0 0 1 %e A089676 1 1 1 1 0 %e A089676 a(6) = 8: %e A089676 0 0 0 0 0 0 %e A089676 0 0 0 1 1 1 %e A089676 0 1 1 0 0 1 %e A089676 0 1 1 1 1 0 %e A089676 1 0 1 0 1 0 %e A089676 1 0 1 1 0 1 %e A089676 1 1 0 0 1 1 %e A089676 1 1 0 1 0 0 %e A089676 a(7) = 9: %e A089676 0 0 0 0 0 0 0 %e A089676 0 0 0 0 0 1 1 %e A089676 0 0 0 1 1 0 1 %e A089676 0 1 1 0 0 0 1 %e A089676 0 1 1 1 1 1 0 %e A089676 1 0 1 0 1 0 1 %e A089676 1 0 1 1 0 1 0 %e A089676 1 1 0 0 1 1 0 %e A089676 1 1 0 1 0 0 1 %e A089676 a(8) = 10: %e A089676 0 0 0 0 0 0 0 0 %e A089676 0 0 0 0 0 0 1 1 %e A089676 0 0 0 0 0 1 0 1 %e A089676 0 0 0 1 1 0 0 1 %e A089676 0 1 1 0 0 0 0 1 %e A089676 0 1 1 1 1 1 1 0 %e A089676 1 0 1 0 1 0 0 1 %e A089676 1 0 1 1 0 1 1 0 %e A089676 1 1 0 0 1 1 1 0 %e A089676 1 1 0 1 0 0 0 1 %e A089676 For a(9) = 16 Bevan uses the construction in his Theorem 4.2, which shows that a(3k) >= a(k)^2 for all k, and then a computer search shows that this is optimal for k = 3. Let v0,v1,v2,v3 denote the four vectors for a(3). Then to get a(9)=16 use the vectors { v_i v_j v_{j-i mod 4}, 0 <= i,j <= 3 }. - _N. J. A. Sloane_, Mar 30 2016 %e A089676 a(10) = 17, from Hugues Randriambololona, Apr 08 2016: %e A089676 0 0 0 0 0 0 0 0 0 0 %e A089676 0 0 0 0 1 1 0 1 1 1 %e A089676 1 1 1 0 1 1 1 0 0 1 %e A089676 0 0 1 0 0 1 1 1 0 1 %e A089676 1 1 0 0 0 1 0 1 0 1 %e A089676 1 1 0 0 1 0 1 1 1 1 %e A089676 0 1 0 1 1 0 0 1 0 0 %e A089676 1 1 1 0 0 0 0 0 1 1 %e A089676 1 0 0 1 1 1 1 0 1 1 %e A089676 1 0 1 0 1 1 0 0 1 0 %e A089676 0 1 0 1 0 1 1 0 0 0 %e A089676 1 0 0 0 0 1 1 1 1 0 %e A089676 1 0 1 0 1 0 1 1 0 0 %e A089676 1 0 1 1 0 0 1 1 1 1 %e A089676 1 1 1 1 0 1 0 1 1 0 %e A089676 0 1 1 0 1 1 1 1 1 0 %e A089676 1 0 1 1 1 1 0 1 0 1 %e A089676 a(11) >= 23, from _Dmitry Kamenetsky_, Jan 05 2018: %e A089676 0 1 1 0 0 0 1 0 1 1 1 %e A089676 0 0 0 0 1 0 0 0 0 0 1 %e A089676 0 0 1 1 0 0 1 0 0 0 1 %e A089676 0 1 1 0 1 0 1 1 1 0 0 %e A089676 0 0 1 0 1 1 0 0 1 1 1 %e A089676 1 1 0 1 1 0 0 0 1 1 0 %e A089676 1 0 0 1 1 0 0 1 0 1 1 %e A089676 1 0 0 1 0 1 1 0 1 1 0 %e A089676 1 1 1 1 1 1 0 0 0 0 0 %e A089676 1 0 0 1 1 1 1 1 1 0 1 %e A089676 1 0 1 0 0 0 0 0 0 0 0 %e A089676 1 0 0 0 0 1 0 1 1 1 1 %e A089676 0 1 0 0 1 0 1 0 0 1 0 %e A089676 1 1 0 0 0 0 0 0 1 0 1 %e A089676 1 1 1 0 0 1 1 1 0 1 1 %e A089676 1 1 0 0 0 1 1 0 0 0 0 %e A089676 0 0 0 1 0 0 1 1 0 1 0 %e A089676 1 0 1 1 1 1 1 0 0 1 1 %e A089676 1 1 1 1 0 0 0 1 0 0 1 %e A089676 0 1 1 1 0 0 0 1 1 1 0 %e A089676 0 1 1 0 1 1 0 1 0 1 0 %e A089676 0 0 0 0 0 1 0 1 0 0 0 %e A089676 0 1 0 1 0 1 0 0 0 0 1 %Y A089676 Cf. A289972. %K A089676 nonn,more,nice %O A089676 0,2 %A A089676 _David Bevan_, Jan 06 2004 %E A089676 Edited by _N. J. A. Sloane_, Mar 29 2016 and Apr 08 2016 %E A089676 a(10) from _Fausto A. C. Cariboni_, Jul 17 2017