This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089677 #50 Feb 11 2021 19:18:29 %S A089677 0,1,1,7,37,271,2341,23647,272917,3543631,51123781,811316287, %T A089677 14045783797,263429174191,5320671485221,115141595488927, %U A089677 2657827340990677,65185383514567951,1692767331628422661,46400793659664205567,1338843898122192101557 %N A089677 Exponential convolution of A000670(n), with A000670(0)=0, with the sequence of all ones alternating in sign. %C A089677 Stirling transform of A005212(n)=[1,0,6,0,120,0,5040,...] is a(n)=[1,1,7,37,271,...]. - _Michael Somos_, Mar 04 2004 %C A089677 Occurs also as first column of a matrix-inversion occurring in a sum-of-like-powers problem. Consider the problem for any fixed natural number m>2 of finding solutions to sum(k=1,n,k^m) = (k+1)^m. Erdos conjectured that there are no solutions for n,m>2. Let D be the matrix of differences of D[m,n] := sum(k=1,n,k^m) - (k+1)^m. Then the generating functions for the rows of this matrix D constitute a set of polynomials in n (for varying n along columns) and the m-th polynomial defining the m-th row. Let GF_D be the matrix of the coefficients of this set of polynomials. Then the present sequence is the (unsigned) second column of GF_D^-1. - _Gottfried Helms_, Apr 01 2007 %H A089677 Vincenzo Librandi, <a href="/A089677/b089677.txt">Table of n, a(n) for n = 0..200</a> %H A089677 J.-C. Aval, V. Féray, J.-C. Novelli, J.-Y. Thibon, <a href="http://arxiv.org/abs/1312.2727">Quasi-symmetric functions as polynomial functions on Young diagrams</a>, arXiv preprint arXiv:1312.2727, 2013 %H A089677 Gottfried Helms, <a href="http://go.helms-net.de/math/divers/ZerosOfGpFunctions.htm">Discussion of a problem concerning summing of like powers</a> %F A089677 E.g.f.: (exp(x)-1)/(exp(x)*(2-exp(x))). %F A089677 O.g.f.: Sum_{n>=0} (2*n+1)! * x^(2*n+1) / Product_{k=1..2*n+1} (1-k*x). - _Paul D. Hanna_, Jul 20 2011 %F A089677 a(n)=Sum(Binomial(n, k)(-1)^(n-k)Sum(i! Stirling2(k, i), i=1, ..k), k=0, .., n). %F A089677 a(n) = (A000670(n)-(-1)^n)/2. - _Vladeta Jovovic_, Jan 17 2005 %F A089677 a(n) ~ n! / (4*(log(2))^(n+1)). - _Vaclav Kotesovec_, Feb 25 2014 %F A089677 a(n) = Sum_{k=0..floor(n/2)} (2*k+1)!*Stirling2(n, 2*k+1). - _Peter Luschny_, Sep 20 2015 %e A089677 From _Gus Wiseman_, Jan 06 2021: (Start) %e A089677 a(n) is the number of ordered set partitions of {1..n} into an odd number of blocks. The a(1) = 1 through a(3) = 7 ordered set partitions are: %e A089677 {{1}} {{1,2}} {{1,2,3}} %e A089677 {{1},{2},{3}} %e A089677 {{1},{3},{2}} %e A089677 {{2},{1},{3}} %e A089677 {{2},{3},{1}} %e A089677 {{3},{1},{2}} %e A089677 {{3},{2},{1}} %e A089677 (End) %p A089677 h := n -> add(combinat:-eulerian1(n,k)*2^k,k=0..n): %p A089677 a := n -> (h(n)-(-1)^n)/2: seq(a(n),n=0..20); # _Peter Luschny_, Jul 09 2015 %t A089677 Table[Sum[Binomial[n, k](-1)^(n-k)Sum[i! StirlingS2[k, i], {i, 1, k}], {k, 0, n}], {n, 0, 20}] %o A089677 (PARI) a(n)=if(n<0,0,n!*polcoeff(subst(y/(1-y^2),y,exp(x+x*O(x^n))-1),n)) %o A089677 (PARI) {a(n)=polcoeff(sum(m=0,n,(2*m+1)!*x^(2*m+1)/prod(k=1,2*m+1,1-k*x+x*O(x^n))),n)} /* _Paul D. Hanna_, Jul 20 2011 */ %o A089677 (Sage) %o A089677 def A089677_list(len): # with a(0)=1 %o A089677 e, r = [1], [1] %o A089677 for i in (1..len-1): %o A089677 for k in range(i-1, -1, -1): e[k] = (e[k]*i)//(i-k) %o A089677 r.append(-sum(e[j]*(-1)^(i-j) for j in (0..i-1))) %o A089677 e.append(sum(e)) %o A089677 return r %o A089677 A089677_list(21) # _Peter Luschny_, Jul 09 2015 %Y A089677 Ordered set partitions are counted by A000670. %Y A089677 The case of (unordered) set partitions is A024429. %Y A089677 The complement (even-length ordered set partitions) is counted by A052841. %Y A089677 A058695 counts partitions of odd numbers, ranked by A300063. %Y A089677 A101707 counts partitions of odd positive rank. %Y A089677 A160786 counts odd-length partitions of odd numbers, ranked by A300272. %Y A089677 A340102 counts odd-length factorizations into odd factors. %Y A089677 A340692 counts partitions of odd rank. %Y A089677 Other cases of odd length: %Y A089677 - A027193 counts partitions of odd length. %Y A089677 - A067659 counts strict partitions of odd length. %Y A089677 - A166444 counts compositions of odd length. %Y A089677 - A174726 counts ordered factorizations of odd length. %Y A089677 - A332304 counts strict compositions of odd length. %Y A089677 - A339890 counts factorizations of odd length. %Y A089677 Cf. A000700, A026424, A027187, A028260, A078408, A174725, A236914, A340101. %K A089677 easy,nonn %O A089677 0,4 %A A089677 Mario Catalani (mario.catalani(AT)unito.it), Jan 03 2004