A089735 Self-convolution of A004148 (the RNA secondary structure numbers) with itself.
1, 2, 3, 6, 13, 28, 62, 140, 320, 740, 1728, 4068, 9645, 23010, 55195, 133042, 322078, 782758, 1909091, 4671098, 11462607, 28204212, 69569278, 171993316, 426111203, 1057757858, 2630527679, 6552998126, 16350465147, 40857321696, 102239831436
Offset: 0
Keywords
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumeration en biologie moléculaire, Sem. Loth. Comb. B08l (1984) 79-86.
- M. S. Waterman, Home Page (contains copies of his papers)
Formula
a(n) = 2*Sum_{k=ceiling((n+1)/2)..n} binomial(k, n-k)*binomial(k+1, n-k+2)/k for n >= 1.
G.f. = 4/(1 - z + z^2 + sqrt(1 - 2z - z^2 - 2z^3 + z^4))^2.
G.f. = z^3*S^2, where S=S(z) is given by S = 1 + zS + z^2*S(S-1) (the g.f. of the RNA secondary structure numbers, A004148).
a(n) ~ 5^(1/4) * phi^(2*n+4) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence (n+4)*a(n) +(-3*n-7)*a(n-1) +2*n*a(n-2) +3*(-n+1)*a(n-3) +2*(n-2)*a(n-4) +(-3*n+13)*a(n-5) +(n-6)*a(n-6)=0. - R. J. Mathar, Jul 26 2022
Comments