cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089775 Lucas numbers L(12n).

This page as a plain text file.
%I A089775 #46 Apr 19 2025 06:14:11
%S A089775 2,322,103682,33385282,10749957122,3461452808002,1114577054219522,
%T A089775 358890350005878082,115561578124838522882,37210469265847998489922,
%U A089775 11981655542024930675232002,3858055874062761829426214722,1242282009792667284144565908482,400010949097364802732720796316482
%N A089775 Lucas numbers L(12n).
%C A089775 a(n+1)/a(n) converges to (322 + sqrt(103680))/2 = 321.996894379... a(0)/a(1) = 2/322; a(1)/a(2) = 322/103682; a(2)/a(3) = 103682/33385282; a(3)/a(4) = 33385282/10749957122; etc. Lim_{n -> inf} a(n)/a(n+1) = 0.00310562... = 2/(322 + sqrt(103680)) = (322 - sqrt(103680))/2.
%D A089775 J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
%H A089775 Nathaniel Johnston, <a href="/A089775/b089775.txt">Table of n, a(n) for n = 0..100</a>
%H A089775 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A089775 <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>
%H A089775 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (322, -1).
%F A089775 a(n) = 322*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 322
%F A089775 a(n) = ((322 + sqrt(103680))/2)^n + ((322 - sqrt(103680))/2)^n.
%F A089775 (a(n))^2 = a(2n) + 2.
%F A089775 G.f.: (2-322*x)/(1-322*x+x^2). - _Philippe Deléham_, Nov 02 2008
%F A089775 From _Peter Bala_, Apr 16 2025: (Start)
%F A089775 a(n) = Lucas(2*n)^6 - 6*Lucas(2*n)^4 + 9*Lucas(2*n)^2 - 2 = 2*T(6, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
%F A089775 320*Sum_{n >= 1} 1/(a(n) - 324/a(n)) = 1: (324 = Lucas(12) + 2 and 320 = Lucas(12) - 2)
%F A089775 324*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 320/a(n)) = 1.
%F A089775 Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (322 - sqrt(103680))/2 )^2 - 1) and
%F A089775 Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(103680) - 322)/2 )^2),
%F A089775 where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. (End)
%e A089775 a(4) = 10749957122 = 322*a(3) - a(2) = 322*33385282 - 103682 = ((322 + sqrt(103680))/2)^4 + ((322 - sqrt(103680))/2)^4.
%t A089775 Table[LucasL[12n], {n, 0, 13}] (* _Indranil Ghosh_, Mar 15 2017 *)
%o A089775 (Magma) [ Lucas(12*n) : n in [0..70]]; // _Vincenzo Librandi_, Apr 15 2011
%o A089775 (PARI) Vec((2 - 322*x)/(1 - 322*x + x^2) + O(x^14)) \\ _Indranil Ghosh_, Mar 15 2017
%Y A089775 Cf. A000032, A060964.
%Y A089775 a(n) = A000032(12n).
%Y A089775 Row 9 * 2 of array A188644
%Y A089775 Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11).
%K A089775 easy,nonn
%O A089775 0,1
%A A089775 Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004
%E A089775 a(11) - a(13) from _Vincenzo Librandi_, Apr 15 2011