This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089789 #14 Mar 24 2017 00:47:50 %S A089789 0,0,0,0,1,0,0,1,1,0,0,2,2,2,0,0,1,2,2,1,0,0,3,3,4,3,3,0,0,1,3,3,3,3, %T A089789 1,0,0,3,3,5,4,5,3,3,0,0,2,4,4,5,5,4,4,2,0,0,3,4,6,5,7,5,6,4,3,0,0,1, %U A089789 3,4,5,5,5,5,4,3,1,0,0,5,5,7,7,9,7,9,7,7,5,5,0,0,1,5,5,6,7,7,7,7,6,5,5,1,0 %N A089789 Number of irreducible factors of Gauss polynomials. %C A089789 T(n,k) is the number of irreducible factors of the (separable) polynomial [n]!/([k]![n-k]!). Here [n]! denotes the product of the first n quantum integers, the n-th quantum integer being defined as (1-q^n)/(1-q). %C A089789 T(n,k) gives the number of positive integers m <= n such that (n mod m) < (k mod m). - _Tom Edgar_, Aug 21 2014 %H A089789 Stan Wagon and Herbert S. Wilf, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v1i1r3">When are subset sums equidistributed modulo m?</a>, The Electronic Journal of Combinatorics, Vol. 1, 1994 (#R3). %F A089789 T(n, k) = T(n-1, k-1) + d(n) - d(k), where d(n) is the number of divisors of n. %e A089789 The triangle T(n,k) begins: %e A089789 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... %e A089789 0: 0 %e A089789 1: 0 0 %e A089789 2: 0 1 0 %e A089789 3: 0 1 1 0 %e A089789 4: 0 2 2 2 0 %e A089789 5: 0 1 2 2 1 0 %e A089789 6: 0 3 3 4 3 3 0 %e A089789 7: 0 1 3 3 3 3 1 0 %e A089789 8: 0 3 3 5 4 5 3 3 0 %e A089789 9: 0 2 4 4 5 5 4 4 2 0 %e A089789 10: 0 3 4 6 5 7 5 6 4 3 0 %e A089789 11: 0 1 3 4 5 5 5 5 4 3 1 0 %e A089789 12: 0 5 5 7 7 9 7 9 7 7 5 5 0 %e A089789 13: 0 1 5 5 6 7 7 7 7 6 5 5 1 0 %e A089789 ... Formatted by _Wolfdieter Lang_, Dec 07 2012 %e A089789 T(8,3) equals the number of irreducible factors of (1-q^8)(1-q^7)(1-q^6)/((1-q^3)(1-q^2)(1-q)), which is a product of 5 cyclotomic polynomials in q, namely the 2nd, 4th, 6th, 7th and 8th. Thus T(8,3)=5. %Y A089789 Cf. A008967, A047971, A219237, A000005. %K A089789 easy,nonn,tabl %O A089789 0,12 %A A089789 _Paul Boddington_, Jan 09 2004