cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089901 Main diagonal of A089900, also the inverse hyperbinomial of A000312 (offset 1).

This page as a plain text file.
%I A089901 #30 Oct 23 2024 16:06:14
%S A089901 1,3,18,159,1848,26595,456048,9073911,205437312,5214027267,
%T A089901 146602156800,4522866752943,151895344131072,5516066815430691,
%U A089901 215373243256915968,8996883483108522375,400372897193449586688,18908951043963993686019
%N A089901 Main diagonal of A089900, also the inverse hyperbinomial of A000312 (offset 1).
%C A089901 The n-th row of array A089900 is the n-th binomial transform of the factorials found in row 0: {1!,2!,3!,...,(n+1)!,...}. The hyperbinomial transform of this main diagonal gives: {1,4,27,...,(n+1)^(n+1),...}, which is the next lower diagonal in array A089900.
%C A089901 a(n), for n>=1, is the number of colored labeled mappings from n points to themselves, where each component is one of three colors. - _Steven Finch_, Nov 28 2021
%H A089901 G. C. Greubel, <a href="/A089901/b089901.txt">Table of n, a(n) for n = 0..380</a>
%H A089901 Nicholas John Bizzell-Browning, <a href="https://bura.brunel.ac.uk/handle/2438/29960">LIE scales: Composing with scales of linear intervallic expansion</a>, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 162.
%H A089901 Steven Finch, <a href="https://arxiv.org/abs/2111.14487">Rounds, Color, Parity, Squares</a>, arXiv:2111.14487 [math.CO], 2021.
%F A089901 a(n) = Sum_{k=0..n} n^(n-k) * C(n,k) * (k+1)!.
%F A089901 a(n) = Sum_{k=0..n} -(n-k-1)^(n-k-1) * C(n,k) * (k+1)^(k+1).
%F A089901 E.g.f.: 1 / (1 + LambertW(-x))^3.
%F A089901 E.g.f.: (Sum_{n>=0} (n+1)^(n+1) * x^n/n!) * (Sum_{n>=0} -(n-1)^(n-1) * x^n/n!).
%F A089901 a(n) ~ n^(n+1) * (1 + sqrt(Pi/(2*n))). - _Vaclav Kotesovec_, Jul 09 2013
%F A089901 a(n) = (n^(n + 2) + exp(n)*Gamma(n + 2, n)) / (n + 1). - _Peter Luschny_, Nov 29 2021
%t A089901 CoefficientList[Series[1/(1+LambertW[-x])^3, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jul 09 2013 *)
%t A089901 Flatten[{1,Table[Sum[n^(n-k)*Binomial[n,k]*(k+1)!,{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Jul 09 2013 *)
%t A089901 a[n_] := (n^(n + 2) + Exp[n] Gamma[n + 2, n]) / (n + 1);
%t A089901 Table[a[n], {n, 0, 17}]  (* _Peter Luschny_, Nov 29 2021 *)
%o A089901 (PARI) /* As (n+1)-th term of the n-th binomial transform of {(n+1)!}: */
%o A089901 {a(n)=if(n<0,0,sum(i=0,n,n^(n-i)*binomial(n,i)*(i+1)!))}
%o A089901 for(n=0,20,print1(a(n),", "))
%o A089901 (PARI) /* As (n+1)-th term of inverse hyperbinomial of {(n+1)^(n+1)}: */
%o A089901 {a(n)=if(n<0,0,sum(i=0,n,-(n-i-1)^(n-i-1)*binomial(n,i)*(i+1)^(i+1)))}
%o A089901 for(n=0,20,print1(a(n),", "))
%Y A089901 Cf. A000312, A089900, A089902, A000312.
%K A089901 nonn
%O A089901 0,2
%A A089901 _Paul D. Hanna_, Nov 14 2003