This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089934 #37 Jul 18 2025 09:33:41 %S A089934 2,3,3,5,7,5,8,17,17,8,13,41,63,41,13,21,99,227,227,99,21,34,239,827, %T A089934 1234,827,239,34,55,577,2999,6743,6743,2999,577,55,89,1393,10897, %U A089934 36787,55447,36787,10897,1393,89,144,3363,39561,200798,454385,454385,200798 %N A089934 Table T(n,k) of the number of n X k matrices on {0,1} without adjacent 0's in any row or column. %C A089934 Recurrence orders are A089935. n X 1/1 X n patterns interpreted as binary values is A003714. %C A089934 Number of independent vertex sets in the P_n X P_k grid graph. - _Andrew Howroyd_, Jun 06 2017 %C A089934 All columns (or rows) are linear recurrences with constant coefficients and order of the recurrence <= A001224(k+1). - _Andrew Howroyd_, Dec 24 2019 %C A089934 The enumeration of tiling "W-shaped" polyominoes in a (n+1) X (k+1) rectangle, whose shapes are (no flipping or rotating allowed): %C A089934 ._. ._._. ._._. ._._. %C A089934 |_| |_|_| ._|_|_| ._|_|_| %C A089934 |_| |_|_| ._|_|_| %C A089934 |_| |_|_| %C A089934 |_| ... - _Liang Kai_, Apr 19 2025 %H A089934 Liang Kai, <a href="/A089934/b089934.txt">Antidiagonals n = 1..77, flattened</a> (antidiagonals n = 1..49 from Alois P. Heinz) %H A089934 Kai Liang, <a href="https://arxiv.org/abs/2507.04007">Independent Set Enumeration and Estimation of Related Constants of Grid Graphs</a>, arXiv:2507.04007 [math.CO], 2025. See p. 4. %H A089934 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a> %H A089934 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentVertexSet.html">Independent Vertex Set</a> %e A089934 Table starts: %e A089934 ======================================================== %e A089934 n\k| 1 2 3 4 5 6 7 %e A089934 ---|---------------------------------------------------- %e A089934 1 | 2 3 5 8 13 21 34 ... %e A089934 2 | 3 7 17 41 99 239 577 ... %e A089934 3 | 5 17 63 227 827 2999 10897 ... %e A089934 4 | 8 41 227 1234 6743 36787 200798 ... %e A089934 5 | 13 99 827 6743 55447 454385 3729091 ... %e A089934 6 | 21 239 2999 36787 454385 5598861 69050253 ... %e A089934 7 | 34 577 10897 200798 3729091 69050253 1280128950 ... %e A089934 ... - _Andrew Howroyd_, Jun 06 2017 %e A089934 a(2,2)=7: %e A089934 11 11 11 10 10 01 01 %e A089934 11 10 01 11 01 11 10 %o A089934 (PARI) %o A089934 step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*!bitand(S[i], S[j])))} %o A089934 mkS(k)={select(b->!bitand(b,b>>1), [0..2^k-1])} %o A089934 T(n,k)={my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v)} \\ _Andrew Howroyd_, Dec 24 2019 %Y A089934 T(n, 0) = T(0, m) = 1. Zero based table is A089980. %Y A089934 Rows 1-7 are A000045, A001333, A051736, A051737, A089936, A089937, A089938. %Y A089934 Main diagonal is A006506. %Y A089934 Cf. A089935, A001224, A197054 (maximal independent sets), A218354, A003714. %K A089934 nonn,tabl %O A089934 1,1 %A A089934 _Marc LeBrun_, Nov 15 2003