This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089937 #18 Dec 25 2019 08:37:30 %S A089937 21,239,2999,36787,454385,5598861,69050253,851302029,10496827403, %T A089937 129422885699,1595777230271,19675706193157,242599324206721, %U A089937 2991220223776445,36881397137844409,454743263319217787,5606930966068061311,69132797971282998447 %N A089937 Number of 6 X n matrices with entries {0,1} without adjacent 0's in any row or column. 6th row of A089934. %C A089937 Row/columns 1 through 7 are A000045, A001333, A051736, A051737, A089936, A089937, A089938. %C A089937 Number of independent vertex sets in the grid graph P_6 X P_n. - _Andrew Howroyd_, Jun 06 2017 %H A089937 Andrew Howroyd, <a href="/A089937/b089937.txt">Table of n, a(n) for n = 1..200</a> %F A089937 G.f.: x*(21 + 71*x - 215*x^2 - 385*x^3 + 668*x^4 + 234*x^5 - 400*x^6 + 9*x^7 + 49*x^8 - 3*x^9 - x^10) / (1 - 8*x - 62*x^2 + 78*x^3 + 375*x^4 - 300*x^5 - 486*x^6 + 385*x^7 + 30*x^8 - 52*x^9 + 2*x^10 + x^11) (conjectured). - _Colin Barker_, Jun 06 2017 %F A089937 The above conjecture is correct because the order of the recurrence is A089935(6) = 11. - _Andrew Howroyd_, Dec 24 2019 %Y A089937 Row 6 of A089934. %Y A089937 Cf. A000045, A001333, A051736, A051737, A089935, A089936, A089938. %K A089937 nonn %O A089937 1,1 %A A089937 _Marc LeBrun_, Nov 15 2003 %E A089937 Terms a(17) and beyond from _Andrew Howroyd_, Jun 06 2017