This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A089944 #22 Jan 13 2025 16:30:27 %S A089944 1,2,1,3,3,1,4,8,4,1,5,20,15,5,1,6,48,54,24,6,1,7,112,189,112,35,7,1, %T A089944 8,256,648,512,200,48,8,1,9,576,2187,2304,1125,324,63,9,1,10,1280, %U A089944 7290,10240,6250,2160,490,80,10,1,11,2816,24057,45056,34375,14256,3773,704,99,11,1 %N A089944 Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0. %C A089944 The main diagonal is A089945: {T(n,n)=(2*n+1)*(n+1)^(n-1), n>=0}; the hyperbinomial transform of the main diagonal is the next lower diagonal in the array (A089946): {T(n+1,n) = 2*(n+1)*(n+2)^(n-1), n>=0}. %H A089944 Paolo Xausa, <a href="/A089944/b089944.txt">Table of n, a(n) for n = 0..11324</a> (first 150 antidiagonals). %F A089944 T(n,k) = (k+n+1)*(n+1)^(k-1). %F A089944 E.g.f.: (1+x)*exp(x)/(1-y*exp(x)). %e A089944 Rows begin: %e A089944 {1, 2, 3, 4, 5, 6, 7,..}, %e A089944 {1, 3, 8, 20, 48, 112, 256,..}, %e A089944 {1, 4, 15, 54, 189, 648, 2187,..}, %e A089944 {1, 5, 24, 112, 512, 2304, 10240,..}, %e A089944 {1, 6, 35, 200, 1125, 6250, 34375,..}, %e A089944 {1, 7, 48, 324, 2160, 14256, 93312,..}, %e A089944 {1, 8, 63, 490, 3773, 28812, 218491,..},.. %t A089944 A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1); %t A089944 Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 13 2025 *) %o A089944 (PARI) T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1)) %Y A089944 Cf. A089945, A089946. %Y A089944 Rows : A000027, A001792, A006234, A079028, A081105, A081106, A081107, A081108, A081109, A081122. %Y A089944 Columns : A000012, A000027, A005563. %K A089944 nonn,tabl,easy %O A089944 0,2 %A A089944 _Paul D. Hanna_, Nov 23 2003