cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089950 Partial sums of A001652.

This page as a plain text file.
%I A089950 #10 Aug 10 2018 17:33:20
%S A089950 0,3,23,142,838,4897,28557,166460,970220,5654879,32959075,192099594,
%T A089950 1119638514,6525731517,38034750617,221682772216,1292061882712,
%U A089950 7530688524091,43892069261871,255821727047174,1491038293021214,8690408031080153,50651409893459749
%N A089950 Partial sums of A001652.
%H A089950 Colin Barker, <a href="/A089950/b089950.txt">Table of n, a(n) for n = 0..1000</a>
%H A089950 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-14,8,-1).
%F A089950 a(n) = Sum_{k=0...n} A001652(k).
%F A089950 a(n) = A000129(n+1)^2-floor((n+2)/2); e.g. 0=1^2-1 and 166460=408^2-4.
%F A089950 G.f.: -x*(-3+x) / ( (1-6*x+x^2)*(x-1)^2 ). - _R. J. Mathar_, Feb 05 2016
%F A089950 a(n) = (-6 + (3-2*sqrt(2))^(1+n) + 3*(3+2*sqrt(2))^n + 2*sqrt(2)*(3+2*sqrt(2))^n - 4*n) / 8. - _Colin Barker_, Aug 10 2018
%o A089950 (PARI) concat(0, Vec(-x*(-3+x)/((1-6*x+x^2)*(x-1)^2) + O(x^40))) \\ _Michel Marcus_, Feb 05 2016
%K A089950 nonn,easy
%O A089950 0,2
%A A089950 _Charlie Marion_, Jan 11 2004