cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089951 Numbers having the same leading decimal digits as their squares.

This page as a plain text file.
%I A089951 #28 Dec 07 2019 17:21:43
%S A089951 0,1,10,11,12,13,14,95,96,97,98,99,100,101,102,103,104,105,106,107,
%T A089951 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,
%U A089951 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,895
%N A089951 Numbers having the same leading decimal digits as their squares.
%C A089951 A000030(a(n)) = A002993(a(n)) = A000030(A000290(a(n))).
%H A089951 Reinhard Zumkeller, <a href="/A089951/b089951.txt">Table of n, a(n) for n = 1..10000</a>
%F A089951 A number n is in the sequence iff n = 0 or n/10^floor(log_10(n)) lies in one of the half-open intervals [1, sqrt(2)), [sqrt(80), 9) or [sqrt(90), 10). - _David W. Wilson_, May 29 2008
%e A089951 895*895 = 801025, therefore 895 is a term: a(55)=895.
%p A089951 F:= proc(d) $10^d .. floor(sqrt(2)*10^d), $ ceil(sqrt(80)*10^d) .. 9*10^d - 1, $ ceil(sqrt(90)*10^d) .. 10^(d+1)-1 end proc:
%p A089951 0, F(0), F(1), F(2), F(3); # _Robert Israel_, Mar 18 2015
%t A089951 d[n_] := IntegerDigits[n]; Select[Range[895],
%t A089951 First[d[#]] == First[d[#^2]] &] (* _Jayanta Basu_, Jun 03 2013 *)
%o A089951 (PARI) a(n)={my(v = [1, sqrt(80), sqrt(90)], w=[(k)->10^k * ((sqrt(2) - 1))\1 + 1, (k)->9 * 10^k - ceil(sqrt(80) * 10^k), (k)->10 * 10^k - ceil(sqrt(90) * 10^k)],i = 1,k = 0); if(n==1, 0, n--; while(n>w[i](k), n-=w[i](k); i++; if(i == 4, i = 1; k++)); ceil(v[i]*10^k)+n-1)} \\ _David A. Corneth_, Feb 26 2015
%o A089951 (PARI) isok(n) = (n == 0) || (digits(n)[1] == digits(n^2)[1]); \\ _Michel Marcus_, Mar 18 2015
%o A089951 (Haskell)
%o A089951 a089951 n = a089951_list !! (n-1)
%o A089951 a089951_list = [x | x <- [0..], a000030 x == a000030 (x ^ 2)]
%o A089951 -- _Reinhard Zumkeller_, Apr 01 2015
%Y A089951 Cf. A018834.
%Y A089951 Cf. A144582. - _Reinhard Zumkeller_, Aug 17 2008
%Y A089951 Cf. A000030, A002993, A000290, A256523 (subsequence).
%K A089951 nonn,base
%O A089951 1,3
%A A089951 _Reinhard Zumkeller_, Jan 12 2004