cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089963 a(n) = Taylor coefficient at x=li(e) of the inverse of the function li(x) (the logarithm integral) multiplied by exp(n).

This page as a plain text file.
%I A089963 #2 Sep 22 2004 03:00:00
%S A089963 1,0,-1,2,1,-26,99,90,-3627,21054,21735,-1465278,11769033,10145862,
%T A089963 -1292734485,13592476842,5651236989,-2114795158962,28081762413807,
%U A089963 -8040489684078,-5763467251713423,94263221264053590,-115569462262872717,-24259606258553011206,479901663461939425317
%N A089963 a(n) = Taylor coefficient at x=li(e) of the inverse of the function li(x) (the logarithm integral) multiplied by exp(n).
%C A089963 Define the inverse of li(x) by H(z) and the point Zo = li(e). Then H(z)= e + a(1)*exp(-1)*(z-Zo)/1 + a(2)*exp(-2)*(z-Zo)^2/2! + a(3)*exp(-3)*(z-Zo)^3/3! + ...
%D A089963 D. Dominici, Nested derivatives: a simple method for computing series expansions of inverse functions, IJMMS 2003:58, 3699-3715.
%K A089963 sign
%O A089963 1,4
%A A089963 Diego Dominici (dominicd(AT)newpaltz.edu), Jan 12 2004