cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089996 a(n) = primes generated by the function ( f[n_]=Floor[(A004001[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)]).

This page as a plain text file.
%I A089996 #8 Jun 02 2025 00:17:06
%S A089996 3,5,13,17,41,53,59,61,101,127,151,167,193,269,277,281,283,313,359,
%T A089996 419,421,439,463,467,499,509,619,691,743,787,853,859,907,1061,1069,
%U A089996 1097,1181,1229,1249,1277,1289,1303,1381,1427,1453,1531,1571,1583,1609,1741
%N A089996 a(n) = primes generated by the function ( f[n_]=Floor[(A004001[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)]).
%C A089996 A prime generating function based on the primes, A004001 and the distribution of the primes.
%C A089996 By itself the integer function : f[n_]=Floor[(Conway[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)] is not very interesting: it is made to match the function g[n_]=n*Log[n]
%t A089996 digits=6*200 Conway[n_Integer?Positive] := Conway[n] =Conway[Conway[n-1]] + Conway[n - Conway[n-1]] Conway[1] = Conway[2] = 1 (* PrimeQ sieve function *) a=Table[If[PrimeQ[Floor[(Conway[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)]]==True, Floor[(Conway[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)], 0], {n, 1, digits}] (* eliminate the extra zeros *) b=Union[a] Delete[b, 1]
%Y A089996 Cf. A004001.
%K A089996 nonn
%O A089996 1,1
%A A089996 _Roger L. Bagula_, Jan 14 2004