This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090015 #19 Sep 16 2022 08:51:55 %S A090015 6,36,258,2136,19998,208524,2393754,29976192,406446774,5930064372, %T A090015 92608986546,1541044428456,27216454135758,508388707585116, %U A090015 10013199347882058,207381428863832784,4505207996358719334 %N A090015 Permanent of (0,1)-matrix of size n X (n+d) with d=5 and n-1 zeros not on a line. %D A090015 Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7. %H A090015 Indranil Ghosh, <a href="/A090015/b090015.txt">Table of n, a(n) for n = 1..445</a> %H A090015 Seok-Zun Song et al., <a href="http://dx.doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Lin. Algebra and its Applic. 373 (2003), pp. 197-210. %F A090015 a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36 %F A090015 a(n) ~ exp(-1) * n! * n^5 / 5!. - _Vaclav Kotesovec_, Nov 30 2017 %F A090015 a(n) = ((n^6+21*n^5+160*n^4+545*n^3+814*n^2+415*n+1)*exp(-1)*Gamma(n, -1)+(-1)^n*(n^5+20*n^4+141*n^3+422*n^2+499*n+154))/120. - _Robert Israel_, Nov 26 2018 %p A090015 f:= gfun:-rectoproc({a(n) = (n+4)*a(n-1) + (n-2)*a(n-2),a(1)=6,a(2)=36},a(n),remember): %p A090015 map(f, [$1..40]); # _Robert Israel_, Nov 26 2018 %t A090015 t={6,36};Do[AppendTo[t,(n+4)*t[[-1]]+(n-2)*t[[-2]]],{n,3,17}];t (* _Indranil Ghosh_, Feb 21 2017 *) %t A090015 RecurrenceTable[{a[n] == (n+4)*a[n-1] + (n-2)*a[n-2], %t A090015 a[1] == 6, a[2] == 36}, a, {n, 1, 40}] (* _Jean-François Alcover_, Sep 16 2022, after _Robert Israel_ *) %Y A090015 a(n) = A001910(n-1) + A001910(n), a(1)=6 %Y A090015 Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090012-A090016. %K A090015 nonn,easy %O A090015 1,1 %A A090015 _Jaap Spies_, Dec 13 2003 %E A090015 Corrected by _Jaap Spies_, Jan 26 2004