A090023 Number of distinct lines through the origin in the n-dimensional lattice of side length 7.
0, 1, 37, 415, 3745, 31471, 257257, 2078455, 16704865, 133935391, 1072633177, 8585561095, 68702163985, 549687102511, 4397773276297, 35183283965335, 281470638631105, 2251782504544831, 18014329402322617, 144114912035163175, 1152920401607386225
Offset: 0
Examples
a(2) = 37 because in 2D the lines have slope 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1/6, 5/6, 1/5, 2/5, 3/5, 4/5, 1/4, 3/4, 1/3, 2/3, 1/2, 1 and their reciprocals.
Links
- Index entries for linear recurrences with constant coefficients, signature (18,-115,330,-424,192).
Crossrefs
Programs
-
Mathematica
Table[8^n - 4^n - 3^n - 2^n + 2, {n, 0, 20}]
-
Python
[8**n-4**n-3**n-2**n+2 for n in range(25)] # Gennady Eremin, Mar 09 2022
Formula
a(n) = 8^n - 4^n - 3^n - 2^n + 2.
G.f.: -x*(200*x^3-136*x^2+19*x+1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(8*x-1)). - Colin Barker, Sep 04 2012
Comments