A090024 Number of distinct lines through the origin in the n-dimensional lattice of side length 8.
0, 1, 45, 571, 5841, 55651, 515025, 4702531, 42649281, 385447171, 3476958705, 31332052291, 282184860321, 2540643522691, 22870684139985, 205860600134851, 1852867557848961, 16676418630942211, 150090820212050865
Offset: 0
Examples
a(2) = 45 because in 2D the lines have slope 0, 1/8, 3/8, 5/8, 7/8, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1/6, 5/6, 1/5, 2/5, 3/5, 4/5, 1/4, 3/4, 1/3, 2/3, 1/2, 1 and their reciprocals.
Links
- Gennady Eremin, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (20,-140,430,-579,270).
Crossrefs
Programs
-
Mathematica
Table[9^n - 5^n - 3^n - 2^n + 2, {n, 0, 20}]
-
Python
[9**n-5**n-3**n-2**n+2 for n in range(30)] # Gennady Eremin, Mar 12 2022
Formula
a(n) = 9^n - 5^n - 3^n - 2^n + 2.
G.f.: -x*(291*x^3-189*x^2+25*x+1)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(9*x-1)). [Colin Barker, Sep 04 2012]
Comments