This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090029 #15 Mar 31 2021 10:47:54 %S A090029 0,127,2059,16129,75811,277495,804973,2078455,4702531,9905365, %T A090029 19188793,35533303,61846723,104511583,168681913,266042113,405259513, %U A090029 607140745,883046011,1269174145,1780715833,2472697501,3366818491,4548464341 %N A090029 Number of distinct lines through the origin in 7-dimensional cube of side length n. %C A090029 Equivalently, lattice points where the GCD of all coordinates = 1. %F A090029 a(n) = A090030(7, n). %F A090029 a(n) = (n+1)^7 - 1 - Sum_{j=2..n+1} a(floor(n/j)). - _Chai Wah Wu_, Mar 30 2021 %e A090029 a(2) = 2059 because the 2059 points with at least one coordinate=2 all make distinct lines and the remaining 127 points and the origin are on those lines. %t A090029 aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]];lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1;Table[lines[7, k], {k, 0, 40}] %o A090029 (Python) %o A090029 from functools import lru_cache %o A090029 @lru_cache(maxsize=None) %o A090029 def A090029(n): %o A090029 if n == 0: %o A090029 return 0 %o A090029 c, j = 1, 2 %o A090029 k1 = n//j %o A090029 while k1 > 1: %o A090029 j2 = n//k1 + 1 %o A090029 c += (j2-j)*A090029(k1) %o A090029 j, k1 = j2, n//j2 %o A090029 return (n+1)**7-c+127*(j-n-1) # _Chai Wah Wu_, Mar 30 2021 %Y A090029 Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k. %K A090029 nonn %O A090029 0,2 %A A090029 _Joshua Zucker_, Nov 25 2003