This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090033 #24 Aug 02 2021 06:41:03 %S A090033 0,1,6,2,21,31,3,36,53,80,4,55,84 %N A090033 Triangle T(j,k) read by rows, where T(j,k) is the number of single tile moves in the longest optimal solution of the j X k generalization of the sliding block 15-puzzle, starting with the empty square in a corner. %C A090033 T(k,j) = T(j,k). %C A090033 T(2,2), T(2,3), T(4,2), T(4,3) from Karlemo and Östergård, T(3,3) from Reinefeld, T(4,4) from Bruengger et al. %D A090033 For references and links see A087725(n)=T(n,n). %e A090033 The triangle begins %e A090033 0 %e A090033 1 6 %e A090033 2 21 31 %e A090033 3 36 53 80 %e A090033 4 55 84 ... %e A090033 . %e A090033 a(6)=T(3,3)=31 because the A090163(3,3)=2 longest optimal solution paths of the 3 X 3 (9-) sliding block puzzle have length 31 (see A089473). %o A090033 (Python) # alst(), moves(), swap() in A089473 %o A090033 def T(j, k): # chr(45) is '-' %o A090033 start, shape = "".join(chr(45+i) for i in range(j*k)), (j, k) %o A090033 return len(alst(start, shape))-1 %o A090033 for j in range(1, 5): %o A090033 for k in range(1, j+1): %o A090033 print(T(j,k), end=", ") # _Michael S. Branicky_, Aug 02 2021 %Y A090033 Cf. A087725, A089473, A089484, A090034, A090035, A090036, A090166, A090163 corresponding number of different configurations with largest distance. %Y A090033 Cf. A151944 same as this sequence, but written as full array. %K A090033 nonn,tabl,hard,more %O A090033 1,3 %A A090033 _Hugo Pfoertner_, Nov 23 2003 %E A090033 T(5,3) copied from A151944 by _Hugo Pfoertner_, Aug 02 2021