A090044 Triangle read by rows: T(n,k) = A083093 with 1's and 2's interchanged.
2, 2, 2, 2, 1, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 1, 2, 2, 1, 2, 2, 0, 0, 1, 0, 0, 2, 2, 2, 0, 1, 1, 0, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 2, 2
Offset: 0
Examples
2; 2,2; 2,1,2; 2,0,0,2; ...
Links
- Y. Moshe, The density of 0's in recurrence double sequences, J. Number Theory, 103 (2003), 109-121; see Fig. 1.
- Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
Programs
-
Mathematica
-Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], -3] (* Robert G. Wilson v, Jan 19 2004 *)
Formula
The negative of Pascal's triangle read mod 3.
Extensions
Extended by Robert G. Wilson v, Jan 19 2004