cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090045 Number of equivalence classes of reflexive polytopes in dimension n.

This page as a plain text file.
%I A090045 #49 Jan 08 2019 19:10:19
%S A090045 1,16,4319,473800776
%N A090045 Number of equivalence classes of reflexive polytopes in dimension n.
%C A090045 Two polytopes in dimension n are called "equivalent" if there is a matrix in GL(n,Z) that carries one polytope onto the other. The 16 equivalence classes of reflexive polygons in dimension 2 are illustrated in Doran and Whitcher 2012. - _Jonathan Sondow_, Dec 08 2012
%H A090045 Ross Altman, James Gray, Yang-Hui He, Vishnu Jejjala, Brent D. Nelson. <a href="http://dx.doi.org/10.1007/JHEP02(2015)158">A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list</a>, Journal of High Energy Physics, 2015, doi://10.1007/JHEP02(2015)158 .
%H A090045 C. F. Doran and U. A. Whitcher, <a href="http://www.jstor.org/stable/10.4169/math.mag.85.5.343">From polygons to string theory</a>, Math. Mag., 85 (2012), 343-359.
%H A090045 Amihay Hanany and Rak-Kyeong Seong, <a href="http://arxiv.org/abs/1201.2614">Brane Tilings and Reflexive Polygons</a>, arXiv:1201.2614 [hep-th], 2012.
%H A090045 YH He, V Jejjala, L Pontiggia, <a href="http://arxiv.org/abs/1512.01579">Patterns in Calabi--Yau Distributions</a>, arXiv preprint arXiv:1512.01579 [hep-th], 2015.
%H A090045 Yang-Hui He, Rak-Kyeong Seong, Shing-Tung Yau, <a href="https://arxiv.org/abs/1704.03462">Calabi-Yau Volumes and Reflexive Polytopes</a>, arXiv:1704.03462 [hep-th], 2017.
%H A090045 M. Kreuzer, <a href="http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYcy.html">Reflexive polyhedra in 4 dimensions</a>
%H A090045 M. Kreuzer and H. Skarke, <a href="http://arXiv.org/abs/hep-th/0002240">Complete classification of reflexive polyhedra in four dimensions</a>, arXiv:hep-th/0002240, 2000.
%H A090045 J. C. Lagarias and G. M. Ziegler, <a href="http://dx.doi.org/10.4153/CJM-1991-058-4">Bounds for lattice polytopes containing a fixed number of interior points in a sublattice</a>, Canad. J. Math. 43(1991), 1022-1035.
%H A090045 Luca Terzio Pontiggia, <a href="http://wiredspace.wits.ac.za/handle/10539/25803">Computational methods in string and field theory</a>, doctoral dissertation, Univ. of the Witwatersrand, Johannesburg, 2018.
%H A090045 A. Tsuchiya, <a href="http://arxiv.org/abs/1411.2122">The delta-vectors of reflexive polytopes and of the dual polytopes</a>, arXiv preprint arXiv:1411.2122 [math.CO], 2014, 2015.
%H A090045 G. M. Ziegler, <a href="http://www.mi.fu-berlin.de/math/groups/discgeom/ziegler/Preprintfiles/075PREPRINT.pdf">Questions about polytopes</a>, pp. 1195-1211 of Mathematics Unlimited - 2001 and Beyond, ed. B. Engquist and W. Schmid, Springer-Verlag, 2001.
%Y A090045 See A140296 for the regular Fano polytopes.
%K A090045 nonn,more
%O A090045 1,2
%A A090045 _N. J. A. Sloane_, Jan 21 2004
%E A090045 Definition corrected by _Jonathan Sondow_, Dec 08 2012