This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090045 #49 Jan 08 2019 19:10:19 %S A090045 1,16,4319,473800776 %N A090045 Number of equivalence classes of reflexive polytopes in dimension n. %C A090045 Two polytopes in dimension n are called "equivalent" if there is a matrix in GL(n,Z) that carries one polytope onto the other. The 16 equivalence classes of reflexive polygons in dimension 2 are illustrated in Doran and Whitcher 2012. - _Jonathan Sondow_, Dec 08 2012 %H A090045 Ross Altman, James Gray, Yang-Hui He, Vishnu Jejjala, Brent D. Nelson. <a href="http://dx.doi.org/10.1007/JHEP02(2015)158">A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list</a>, Journal of High Energy Physics, 2015, doi://10.1007/JHEP02(2015)158 . %H A090045 C. F. Doran and U. A. Whitcher, <a href="http://www.jstor.org/stable/10.4169/math.mag.85.5.343">From polygons to string theory</a>, Math. Mag., 85 (2012), 343-359. %H A090045 Amihay Hanany and Rak-Kyeong Seong, <a href="http://arxiv.org/abs/1201.2614">Brane Tilings and Reflexive Polygons</a>, arXiv:1201.2614 [hep-th], 2012. %H A090045 YH He, V Jejjala, L Pontiggia, <a href="http://arxiv.org/abs/1512.01579">Patterns in Calabi--Yau Distributions</a>, arXiv preprint arXiv:1512.01579 [hep-th], 2015. %H A090045 Yang-Hui He, Rak-Kyeong Seong, Shing-Tung Yau, <a href="https://arxiv.org/abs/1704.03462">Calabi-Yau Volumes and Reflexive Polytopes</a>, arXiv:1704.03462 [hep-th], 2017. %H A090045 M. Kreuzer, <a href="http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYcy.html">Reflexive polyhedra in 4 dimensions</a> %H A090045 M. Kreuzer and H. Skarke, <a href="http://arXiv.org/abs/hep-th/0002240">Complete classification of reflexive polyhedra in four dimensions</a>, arXiv:hep-th/0002240, 2000. %H A090045 J. C. Lagarias and G. M. Ziegler, <a href="http://dx.doi.org/10.4153/CJM-1991-058-4">Bounds for lattice polytopes containing a fixed number of interior points in a sublattice</a>, Canad. J. Math. 43(1991), 1022-1035. %H A090045 Luca Terzio Pontiggia, <a href="http://wiredspace.wits.ac.za/handle/10539/25803">Computational methods in string and field theory</a>, doctoral dissertation, Univ. of the Witwatersrand, Johannesburg, 2018. %H A090045 A. Tsuchiya, <a href="http://arxiv.org/abs/1411.2122">The delta-vectors of reflexive polytopes and of the dual polytopes</a>, arXiv preprint arXiv:1411.2122 [math.CO], 2014, 2015. %H A090045 G. M. Ziegler, <a href="http://www.mi.fu-berlin.de/math/groups/discgeom/ziegler/Preprintfiles/075PREPRINT.pdf">Questions about polytopes</a>, pp. 1195-1211 of Mathematics Unlimited - 2001 and Beyond, ed. B. Engquist and W. Schmid, Springer-Verlag, 2001. %Y A090045 See A140296 for the regular Fano polytopes. %K A090045 nonn,more %O A090045 1,2 %A A090045 _N. J. A. Sloane_, Jan 21 2004 %E A090045 Definition corrected by _Jonathan Sondow_, Dec 08 2012