This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090110 #28 Sep 27 2024 08:34:52 %S A090110 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, %T A090110 27,28,29,30,31,32,66,129,130,328,1619,7509,29714,45905,447588,509862, %U A090110 1022565,1102373,1388125,1665379,1762387,1786292,2111602,2962834,3391838 %N A090110 Values of k such that {P(k), P(k+1), ..., P(k+7)} are all prime numbers, where P(k) = 4*k^2 - 154*k + 1523. %C A090110 The terms are arguments introducing a sequence of 8 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003). %H A090110 Amiram Eldar, <a href="/A090110/b090110.txt">Table of n, a(n) for n = 1..1000</a> %H A090110 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_232.htm">Puzzle 232. Primes and Cubic polynomials</a>, The Prime Puzzles and Problems Connection. %e A090110 k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641, 547}, an 8-chain of primes. %t A090110 okQ[x_] := And@@PrimeQ[Table[4n^2-154n+1523, {n,x,x+7}]]; %t A090110 Select[Range[ 510000], okQ] (* _Harvey P. Dale_, May 25 2011 *) %o A090110 (PARI) isp(x) = isprime(4*x^2 - 154*x + 1523); %o A090110 lista(kmax) = {my(v = vector(8, k, isp(k))); for(k = 9, kmax, if(vecprod(v) == 1, print1(k - 8, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ _Amiram Eldar_, Sep 27 2024 %Y A090110 Cf. A090101, A090102, A090107, A090108, A090109, A055561, A090563. %K A090110 nonn %O A090110 1,2 %A A090110 _Labos Elemer_, Dec 30 2003 %E A090110 a(43)-a(51) from _Amiram Eldar_, Sep 27 2024