This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090111 #22 Sep 27 2024 08:34:39 %S A090111 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, %T A090111 27,28,29,30,31,32,33,45,53,66,67,84,129,130,131,266,328,329,1619, %U A090111 1620,2655,2937,7509,7510,18030,29283,29714,29715,37630,42037,44473,45905 %N A090111 Values of k such that {P(k), P(k+1), ..., P(k+6)} are all prime numbers, where P(k) = 4*k^2 - 154*k + 1523. %C A090111 The terms are arguments providing a sequence of 7 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003). %H A090111 Amiram Eldar, <a href="/A090111/b090111.txt">Table of n, a(n) for n = 1..6400</a> (terms 1..200 from Harvey P. Dale) %H A090111 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_232.htm">Puzzle 232. Primes and Cubic polynomials</a>, The Prime Puzzles and Problems Connection. %e A090111 k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641}, a 7-chain of primes. %t A090111 Flatten[Position[Partition[Table[If[PrimeQ[4n^2-154n+1523],1,0],{n,46000}],7,1],{1,1,1,1,1,1,1}]] (* _Harvey P. Dale_, Mar 06 2015 *) %o A090111 (PARI) isp(x) = isprime(4*x^2 - 154*x + 1523); %o A090111 lista(kmax) = {my(v = vector(7, k, isp(k))); for(k = 8, kmax, if(vecprod(v) == 1, print1(k - 7, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ _Amiram Eldar_, Sep 27 2024 %Y A090111 Cf. A090101, A090102, A090107, A090108, A090109, A090110, A055561, A090563. %K A090111 nonn %O A090111 1,2 %A A090111 _Labos Elemer_, Dec 30 2003