This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090123 #21 Jun 09 2024 09:04:52 %S A090123 411,741,819,4041,6165,6315,6861,10281,11025,12489,12579,13119,14331, %T A090123 15225,16095,19125,19881,19929,20799,22461,24051,24885,25815,25971, %U A090123 26979,27075,29955,30801,31641,32661,37371,38361,39369,41181,42681 %N A090123 Integers k such that nextprime(k^5) - prevprime(k^5) = 4. %H A090123 Amiram Eldar, <a href="/A090123/b090123.txt">Table of n, a(n) for n = 1..10000</a> %e A090123 For k = 411, k^5 = 11727599043051; nextprime(k^5) - prevprime(k^5) = 11727599043053 - 11727599043049 = 4, so k is in the sequence. %t A090123 pre[x_] := Prime[PrimePi[x]]; nex[x_] := Prime[PrimePi[x]+1]; de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]]; k=5; Do[If[Equal[Prime[PrimePi[n^k]+1]-Prime[PrimePi[n^k]], 4], Print[n]], {n, 2, 100000}] %t A090123 np4Q[n_]:=Module[{c=n^5},NextPrime[c]-NextPrime[c,-1]==4]; Select[ Range[ 43000], np4Q] (* _Harvey P. Dale_, Oct 06 2017 *) %o A090123 (PARI) isok(n) = (nextprime(n^5+1) - precprime(n^5-1)) == 4; \\ _Michel Marcus_, May 25 2018 %Y A090123 Cf. A077038, A058043, A090121, A090122, A090124, A090125. %K A090123 nonn %O A090123 1,1 %A A090123 _Labos Elemer_, Jan 12 2004 %E A090123 Wrong term 1 removed by _Michel Marcus_, May 25 2018