A090144 Numbers n which when converted to some base between 2 and 9 yield a result with the same digits as n in a different order.
1, 2, 3, 4, 5, 6, 7, 8, 13, 23, 46, 158, 227, 265, 316, 445, 1030, 1045, 1135, 1234, 1236, 1273, 1366, 1380, 1431, 1454, 1653, 2027, 2060, 2116, 2154, 2315, 2534, 3160, 3161, 3162, 3163, 3164, 3165, 3166, 3167, 3226, 5270, 5567, 5637, 5783, 10144, 10235
Offset: 1
Examples
a(12)=158 because 158 in base 9 is 185, a permutation of the digits of 158. a(19)=1135 because 1135 in base 6 is 5131. a(77)=30576 because 30576 in base 8 is 73560.
Links
- C. Seggelin, Interesting Base Conversions.
Programs
-
Maple
"replace all /n in the code below with backslash-n.";digListToNum := proc(L) local i, result; result := 0; for i from nops(L) to 1 by -1 do; result := result*10+L[i]; od; result; end;basePerm := proc(n) local b, nL, nbL, ok; nL := sort(convert(n,base,10));ok := false; for b from 2 to 9 do; nbL := sort(convert(n,base,b)); if nL=nbL then printf("%10d in base %2d = %10d./n",n,b,digListToNum(convert(n,base,b)));ok := true; fi; od; ok; end;basePermList := proc (endAt) local i, L; L := []; for i from 1 to endAt do; if basePerm(i) then L := [op(L),i] fi; od; L; end;basePermList(100000);