This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090158 #9 Feb 13 2016 09:47:28 %S A090158 1,0,-3,9,-15,15,-63,399,-255,-7425,-1023,355839,-4095,-22360065, %T A090158 -16383,1903790079,-65535,-209865211905,-262143,29088885637119, %U A090158 -1048575,-4951498051026945,-4194303,1015423886515240959,-16777215,-246921480190174429185 %N A090158 Odd-indexed terms of the binomial transform equals 1 and the even-indexed terms of the second binomial transform equals 1. %C A090158 Compare the first and 2nd binomial transforms of this sequence: %C A090158 first binomial={1,1,-2,1,4,1,-62,1,1384,1,-50522,1,2702764,..}; %C A090158 2nd binomial={1,2,1,-1,1,17,1,-271,1,7937,1,-353791,..}; %C A090158 to that of the first and 2nd binomial transforms of A090145: %C A090158 first binomial of A090145={1,0,1,-3,1,15,1,-273,1,7935,1,..}; %C A090158 2nd binomial of A090145={1,1,2,1,-4,1,62,1,-1384,1,50522,..}. %C A090158 Comparison reveals this e.g.f. relation of the two sequences: %C A090158 e.g.f.: exp(x)*G090158(x) + exp(2x)*G090145(x) = 2 + 2*sinh(x); %C A090158 e.g.f.: exp(2*x)*G090158(x) - exp(x)*G090145(x) = 2*sinh(x); %C A090158 thus G090158(x) = 2*(1+sinh(x) + exp(x)*sinh(x))/(exp(x)*(1+exp(2*x))) %C A090158 G090145(x) = 2*((1+sinh(x))*exp(x) - sinh(x))/(exp(x)*(1+exp(2*x))). %F A090158 E.g.f.: 2*(1 + sinh(x) + exp(x)*sinh(x)) / (exp(x)*(1 + exp(2*x))). %F A090158 a(2n) = 1 - 2^(2n); %F A090158 1 = sum_{k=0..2n-1} C(2n-1, k)*a(k); %F A090158 1 = sum_{k=0..2n} 2^(2n-k)*C(2n, k)*a(k). %t A090158 With[{nn=30},CoefficientList[Series[2 (1+Sinh[x]+Exp[x]Sinh[x])/ (Exp[x] (1+ Exp[2x])),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Feb 13 2016 *) %Y A090158 Cf. A090145. %K A090158 sign %O A090158 0,3 %A A090158 _Paul D. Hanna_, Nov 22 2003