cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090213 Alternating row sums of array A090214 ((4,4)-Stirling2).

Original entry on oeis.org

1, -15, 1169, -154079, -148969375, 778633335441, -4003896394897551, 27901641934428560705, -268555885416357907647039, 3460225909437698652973995569, -56404253763542830420650221273263, 1050004356721541004548911018674177377
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A000587, A090211-2. A071379 (non-alternating sum, generalized Bell-numbers).

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k FactorialPower[k, 4]^n/k!, {k, 2, Infinity}]*E; Array[a, 12] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) := sum( A090214(n, k)*(-1)^k, k=4..4*n), n>=1. a(0) := 1 may be added.
a(n) = sum(((-1)^k)*(fallfac(k, 4)^n)/k!, k=4..infinity)*exp(1), with fallfac(k, 4)=A008279(k, 4)=k*(k-1)*(k-2)*(k-3) and n>=1. This produces also a(0)=1.
E.g.f. if a(0)=1 is added: exp(1)*(sum(((-1)^k)*exp(fallfac(k, 4)*x)/k!, k=4..infinity) + A000166(3)/3!). with the subfactorials A000166. A000166(3)/3!=1/3. Similar to derivation on top of p. 4656 of the Schork reference.