cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090217 A generalization of triangle A071951 (Legendre-Stirling).

Original entry on oeis.org

1, 120, 1, 14400, 840, 1, 1728000, 619200, 3360, 1, 207360000, 447552000, 9086400, 10080, 1, 24883200000, 322444800000, 23345280000, 76824000, 25200, 1, 2985984000000, 232185139200000, 59152550400000, 539602560000, 457848000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

This is the fourth member of the family A071951 (Legendre-Stirling,(2,2) case), A089504((3,3)-case), A090215 ((4,4)-case).
This triangle underlies the array entry A090216 ((5,5)-generalized Stirling2).

Examples

			Triangle starts:
[1];
[120,1];
[14400,840,1];
[1728000,619200,3360,1];
...
		

Crossrefs

The column sequences (without leading zeros) are powers of 120, etc.

Programs

  • Mathematica
    max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 4, 5]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)

Formula

G.f. for m-th column (without leading zeros and m>=1) is 1/product(1-fallfac(r+4, 5)*x, r=1..m) with fallfac(n, k) := A008279(n, k) (falling factorials).
a(n, m)=sum(A090435(m, p)*fallfac(p, 5)^(n-m), p=1..m)/D(m) if n>=m>=1 else 0; with D(m) := A090436(m).