A090217 A generalization of triangle A071951 (Legendre-Stirling).
1, 120, 1, 14400, 840, 1, 1728000, 619200, 3360, 1, 207360000, 447552000, 9086400, 10080, 1, 24883200000, 322444800000, 23345280000, 76824000, 25200, 1, 2985984000000, 232185139200000, 59152550400000, 539602560000, 457848000
Offset: 1
Examples
Triangle starts: [1]; [120,1]; [14400,840,1]; [1728000,619200,3360,1]; ...
Links
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- W. Lang, First 5 rows.
Crossrefs
The column sequences (without leading zeros) are powers of 120, etc.
Programs
-
Mathematica
max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 4, 5]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
Comments