cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090218 Alternating row sums of array A090216 (generalized Stirling2 array S_{5,5}(n,m)).

This page as a plain text file.
%I A090218 #3 Oct 12 2012 14:40:19
%S A090218 1,-56,-29809,326279119,-2175016082574,-74839638000014951,
%T A090218 12021284427301302745281,-1570241381612307786517290066,
%U A090218 198470943846200888426002717105781,5344440525443920698933785031734661899,-41721146701452069718231186424275967809608724
%N A090218 Alternating row sums of array A090216 (generalized Stirling2 array S_{5,5}(n,m)).
%D A090218 M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
%F A090218 a(n) = -sum(((-1)^k)*(fallfac(k, 5)^n)/k!, k=5..infinity)*exp(1), with fallfac(k, 5)=A008279(k, 5)=product(k+1-r, r=1..5) and n>=1. This produces also a(0)=-1.
%F A090218 E.g.f. if a(0)=-1 is added: -exp(1)*(sum(((-1)^k)*exp(fallfac(k, 5)*x)/k!, k=5..infinity) + 3/8). 3/8=A000166(4)/4! with the subfactorials A000166. Similar to the derivation on top of p. 4656 of the Schork reference.
%K A090218 sign,easy
%O A090218 1,2
%A A090218 _Wolfdieter Lang_, Dec 01 2003