cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A090216 Generalized Stirling2 array S_{5,5}(n,k).

Original entry on oeis.org

1, 120, 600, 600, 200, 25, 1, 14400, 504000, 2664000, 4608000, 3501000, 1350360, 284800, 33800, 2225, 75, 1, 1728000, 371520000, 7629120000, 42762240000, 97388280000, 110386900800, 70137648000, 26920728000, 6548346000, 1039382000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is [1, 6, 11, 16, 21, 26, 31,...]= A016861(n-1), n>=1.
The g.f. for the k-th column, (with leading zeros and k>=5) is G(k,x)= x^ceiling(k/5)*P(k,x)/product(1-fallfac(p,5)*x,p=5..k), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := sum(A090222(k,m)*x^m,m=0..kmax(k)), k>=5, with kmax(k) := floor(4*(k-5)/5)= A090223(k-5). For the recurrence of the G(k,x) see A090222.

Examples

			Triangle begins:
  [1];
  [120,600,600,200,25,1];
  [14400,504000,2664000,4608000,3501000,1350360,284800,33800,2225,75,1];
  ...
		

Crossrefs

Cf. A090217, A090209 (row sums), A090218 (alternating row sums).

Programs

  • Mathematica
    fallfac[n_, k_] := Pochhammer[n-k+1, k]; a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*fallfac[p, 5]^n, {p, 5, k}]; Table[a[n, k], {n, 1, 5}, {k, 5, 5*n}] // Flatten (* Jean-François Alcover, Mar 05 2014 *)
  • Python
    from sympy import binomial, factorial, ff
    def a(n, k): return sum((-1)**p * binomial(k, p) * ff(p, 5)**n for p in range(5, k+1)) * (-1)**k / factorial(k) # David Radcliffe, Jul 01 2025

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*fallfac(p, 5)^n, p=5..k), with fallfac(p, 5) := A008279(p, 5)=product(p+1-q, q=1..5); 5<= k <= 5*n, n>=1, else 0. From eq.(19) with r=5 of the Blasiak et al. reference.
E^n = Sum_{k=5..5n) a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^5d^5/dx^5.
Showing 1-1 of 1 results.