cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090222 Array used for numerators of g.f.s for column sequences of array A090216 ((5,5)-Stirling2).

This page as a plain text file.
%I A090222 #11 Aug 29 2019 17:24:17
%S A090222 1,600,600,648000,200,2592000,1270080000,25,2871000,13592880000,
%T A090222 4267468800000,1,1294920,36462182400,100221504768000,
%U A090222 23228686172160000,284800,38559024000,551224880640000,1056582600192000000
%N A090222 Array used for numerators of g.f.s for column sequences of array A090216 ((5,5)-Stirling2).
%C A090222 The row length sequence for this array is A090223(k-5)+1= floor(4*(k-5)/5)+1, k>=5: [1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, ...].
%C A090222 The g.f. G(k,x) for the k-th column (with leading zeros) of array A090216 is given there. The recurrence is G(k,x) = x*sum(binomial(k-r,5-r)*fallfac(5,5-r)*G(k-r,x),r=1..5))/(1-fallfac(k,5)*x), k>=5, with inputs G(k,x)=0 for k=1,2,3,4 and G(5,x)=x/(1-5!*x); where fallfac(n,m) := A008279(n,m) (falling factorials with fallfac(n,0) := 1). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=5: recurrence for S_{5,5}(n,k).
%H A090222 W. Lang, <a href="/A090222/a090222.txt">First 7 rows</a>.
%F A090222 a(k, n) from: sum(a(k, n)*x^n, n=0..kmax(k)) = G(k, x)* product(1-fallfac(p, 5)*x, p=5..k)/x^ceiling(k/5), k>=5, with G(k, x) defined from the recurrence given above and kmax(k) := floor(4*(k-5)/5)= A090223(k-5).
%e A090222 [1]; [600]; [648000,200]; [2592000,1270080000,25]; ...
%e A090222 G(6,x)/x^2 = 600/((1-5!*x)*(1-6*5*4*3*2*x)). kmax(6)=0, hence P(6,x)=a(6,0)=600; x^2 from x^ceiling(6/5).
%K A090222 nonn,easy,tabf
%O A090222 5,2
%A A090222 _Wolfdieter Lang_, Dec 01 2003