This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090225 #5 Jan 17 2013 08:31:53 %S A090225 0,0,0,0,1,0,0,0,3,0,0,0,2,7,0,0,0,4,12,15,0,0,0,4,30,50,31,0,0,0,8, %T A090225 42,160,180,63,0,0,0,4,84,304,750,602,127,0,0,0,12,78,656,1890,3304, %U A090225 1932,255,0,0,0,8,162,880,4620,10864,14070,6050,511,0,0,0,12,156,1680,8070 %N A090225 T(n,k) = Points in n-dimensional lattice of side length k with at least one coordinate = k and GCD of all coordinates = 1. %F A090225 T(n, 0) = 0; T(n, k) = (k+1)^n - k^n - sum T(n, divisors of k) %e A090225 T(3,2) = 12 because of the six permutations of (2,1,0) and three each of (2,1,1) and (2,2,1). %e A090225 0; %e A090225 0, 0; %e A090225 0, 1, 0; %e A090225 0, 0, 3, 0; %e A090225 0, 0, 2, 7, 0; %e A090225 0, 0, 4, 12, 15, 0; %e A090225 0, 0, 4, 30, 50, 31, 0; %e A090225 0, 0, 8, 42,160,180, 63, 0; %e A090225 0, 0, 4, 84,304,750,602,127, 0; %e A090225 0, 0, 12, 78,656,1890,3304,1932,255, 0; %t A090225 aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]] %Y A090225 Cf. A090030. %K A090225 nonn,tabl %O A090225 0,9 %A A090225 _Joshua Zucker_, Nov 24 2003