cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090238 Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.

This page as a plain text file.
%I A090238 #46 Oct 17 2022 07:22:26
%S A090238 1,0,1,0,2,1,0,6,4,1,0,24,16,6,1,0,120,72,30,8,1,0,720,372,152,48,10,
%T A090238 1,0,5040,2208,828,272,70,12,1,0,40320,14976,4968,1576,440,96,14,1,0,
%U A090238 362880,115200,33192,9696,2720,664,126,16,1,0,3628800,996480,247968,64704,17312,4380,952,160,18,1
%N A090238 Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.
%C A090238 T(n,k) is the number of lists of k unlabeled permutations whose total length is n. Unlabeled means each permutation is on an initial segment of the positive integers. Example: with dashes separating permutations, T(3,2) = 4 counts 1-12, 1-21, 12-1, 21-1. - _David Callan_, Nov 29 2007
%C A090238 For n > 0, -Sum_{i=0..n} (-1)^i*T(n,i) is the number of indecomposable permutations A003319. - _Peter Luschny_, Mar 13 2009
%C A090238 Also the convolution triangle of the factorial numbers for n >= 1. - _Peter Luschny_, Oct 09 2022
%D A090238 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
%F A090238 T(n, k) is given by [0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
%F A090238 T(n, k) = T(n-1, k-1) + ((n+k-1)/k)*T(n-1, k); T(0, 0)=1, T(n, 0)=0 if n > 0, T(0, k)=0 if k > 0.
%F A090238 G.f. for the k-th column: (Sum_{i>=1} i!*t^i)^k = Sum_{n>=k} T(n, k)*t^n.
%F A090238 Sum_{k=0..n} T(n, k)*binomial(m, k) = A084938(m+n, m). - _Philippe Deléham_, Jan 31 2004
%F A090238 T(n, k) = Sum_{j>=0} A090753(j)*T(n-1, k+j-1). - _Philippe Deléham_, Feb 18 2004
%F A090238 From _Peter Bala_, May 27 2017: (Start)
%F A090238 Conjectural o.g.f.: 1/(1 + t - t*F(x)) = 1 + t*x + (2*t + t^2)*x^2 + (6*t + 4*t^2 + t^3)*x^3 + ..., where F(x) = Sum_{n >= 0} n!*x^n.
%F A090238 If true then a continued fraction representation of the o.g.f. is 1 - t + t/(1 - x/(1 - t*x - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - 4*x/(1 - 4*x/(1 - ... ))))))))). (End)
%e A090238 Triangle begins:
%e A090238   1;
%e A090238   0,       1;
%e A090238   0,       2,      1;
%e A090238   0,       6,      4,      1;
%e A090238   0,      24,     16,      6,     1;
%e A090238   0,     120,     72,     30,     8,     1;
%e A090238   0,     720,    372,    152,    48,    10,     1;
%e A090238   0,    5040,   2208,    828,   272,    70,    12,    1;
%e A090238   0,   40320,  14976,   4968,  1576,   440,    96,   14,   1;
%e A090238   0,  366880, 115200,  33192,  9696,  2720,   664,  126,  16,   1;
%e A090238   0, 3628800, 996480, 247968, 64704, 17312,  4380,  952, 160,  18,  1;
%e A090238   ...
%p A090238 T := proc(n,k) option remember; if n=0 and k=0 then return 1 fi;
%p A090238 if n>0 and k=0 or k>0 and n=0 then return 0 fi;
%p A090238 T(n-1,k-1)+(n+k-1)*T(n-1,k)/k end:
%p A090238 for n from 0 to 10 do seq(T(n,k),k=0..n) od; # _Peter Luschny_, Mar 03 2016
%p A090238 # Uses function PMatrix from A357368.
%p A090238 PMatrix(10, factorial); # _Peter Luschny_, Oct 09 2022
%t A090238 T[n_, k_] := T[n, k] = T[n-1, k-1] + ((n+k-1)/k)*T[n-1, k]; T[0, 0] = 1; T[_, 0] = T[0, _] = 0;
%t A090238 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 20 2018 *)
%Y A090238 Another version: A059369.
%Y A090238 Row sums: A051296, A003319 (n>0).
%Y A090238 Diagonals: A000007, A000142, A059371, A000012, A005843, A054000.
%Y A090238 Cf. A084938.
%K A090238 easy,nonn,tabl
%O A090238 0,5
%A A090238 _Philippe Deléham_, Jan 23 2004, Jun 14 2007
%E A090238 New name using a comment from _David Callan_ by _Peter Luschny_, Sep 01 2022