This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090327 #16 Jun 13 2015 00:51:16 %S A090327 1,4,11,30,83,234,671,1950,5723,16914,50231,149670,446963,1336794, %T A090327 4002191,11990190,35937803,107747874,323112551,969075510,2906702243, %U A090327 8719058154,26155077311,78461037630,235374724283,706107395634,2118288632471,6354798788550 %N A090327 Number of rules of a context-free grammar in Chomsky normal form that generates all permutations of n symbols. %H A090327 Colin Barker, <a href="/A090327/b090327.txt">Table of n, a(n) for n = 1..1000</a> %H A090327 P. R. J. Asveld, <a href="http://dx.doi.org/10.1016/j.tcs.2005.11.010">Generating all permutations by context-free grammars in Chomsky normal form</a>, Theoretical Computer Science 354 (2006) 118-130. %H A090327 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6). %F A090327 a(n) = ceiling[ (5*3^(n-2))/2 + 2^(n-1) - 1/2 ] for n > 1. %F A090327 G.f.: -x*(2*x^3-2*x^2-2*x+1) / ((x-1)*(2*x-1)*(3*x-1)). - _Colin Barker_, Jan 15 2015 %F A090327 a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3) for n >= 5. - _Robert Israel_, Jan 15 2015 %e A090327 S -> AD | DA | BE | EB, D -> BC | CB, E -> AC | CA, A -> a, B -> b, C-> c; so a(3)=11. %p A090327 f:= gfun:-rectoproc({a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3),a(1)=1,a(2)=4,a(3)=11,a(4)=30},a(n),'remember'): %p A090327 seq(f(n),n=1..100); # _Robert Israel_, Jan 15 2015 %t A090327 f[n_] := Ceiling[5/2*3^(n - 2) + 2^(n - 1) - 1/2]; Table[ f[n], {n, 2, 27}] (* _Robert G. Wilson v_, Jan 30 2004 *) %o A090327 (PARI) Vec(-x*(2*x^3-2*x^2-2*x+1)/((x-1)*(2*x-1)*(3*x-1)) + O(x^100)) \\ _Colin Barker_, Jan 15 2015 %K A090327 nonn,easy %O A090327 1,2 %A A090327 _Peter R. J. Asveld_, Jan 27 2004 %E A090327 More terms from _Robert G. Wilson v_, Jan 30 2004