This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090393 #10 Jun 04 2016 03:36:16 %S A090393 0,5040,12288,22572,36992,56990,84432,121703,171816,238536,326520, %T A090393 441474,590328,781430,1024760,1332165,1717616,2197488,2790864,3519864, %U A090393 4410000,5490558,6795008,8361443,10233048,12458600,15093000,18197838 %N A090393 Eighth diagonal (m=7) of triangle A084938; a(n) = A084938(n+7,n) = (n^7 + 63*n^6 + 1855*n^5 + 34125*n^4 + 438424*n^3 + 3980172*n^2 + 20946960*n)/5040. %H A090393 Chai Wah Wu, <a href="/A090393/b090393.txt">Table of n, a(n) for n = 0..1000</a> %F A090393 a(n) = A084938(n+7, n) = Sum_{k=0..7} A090238(7, k)*binomial(n, k). %F A090393 From _Chai Wah Wu_, Jun 04 2016: (Start) %F A090393 a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 7. %F A090393 G.f.: x*(3447*x^6 - 21824*x^5 + 57742*x^4 - 81760*x^3 + 65388*x^2 - 28032*x + 5040)/(x - 1)^8. (End) %o A090393 (Python) %o A090393 A090393_list, m = [], [1, 6, 25, 92, 327, 1142, 3447, 0] %o A090393 for _ in range(1001): %o A090393 A090393_list.append(m[-1]) %o A090393 print(m[-1]) %o A090393 for i in range(7): %o A090393 m[i+1] += m[i] # _Chai Wah Wu_, Jun 04 2016 %Y A090393 Cf. A084938 A090238. %K A090393 easy,nonn %O A090393 0,2 %A A090393 _Philippe Deléham_, Jan 31 2004