This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090405 #29 Feb 16 2025 08:32:51 %S A090405 2,1,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0, %T A090405 1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0, %U A090405 1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,1,1,1,1 %N A090405 a(n) = PrimePi(n+2) - PrimePi(n). %C A090405 For n>1, a(n) = 1 if n+1 or n+2 is prime, otherwise a(n) = 0. - _Robert Israel_, Mar 30 2017 %H A090405 G. C. Greubel, <a href="/A090405/b090405.txt">Table of n, a(n) for n = 1..1000</a> %H A090405 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Hardy-LittlewoodConjectures.html">Hardy-Littlewood Conjectures</a> %p A090405 with(numtheory): A090405:=n->pi(n+2)-pi(n): seq(A090405(n), n=1..150); # _Wesley Ivan Hurt_, Mar 30 2017 %t A090405 Table[Subtract @@ Map[PrimePi, n + {2, 0}], {n, 120}] (* or *) %t A090405 Table[Boole@ PrimeQ[n + 1 + Boole[OddQ@ n]] + Boole[n == 1], {n, 120}] (* _Michael De Vlieger_, Mar 30 2017 *) %o A090405 (PARI) for(n=1, 100, print1(primepi(n + 2) - primepi(n),", ")) \\ _Indranil Ghosh_, Mar 31 2017 %o A090405 (Python) %o A090405 from sympy import primepi %o A090405 print([primepi(n + 2) - primepi(n) for n in range(1, 101)]) %o A090405 # _Indranil Ghosh_, Mar 31 2017 %o A090405 (Python) %o A090405 from sympy import isprime %o A090405 def a(n): %o A090405 if n<2: return 2 %o A090405 else: %o A090405 if isprime(n + 1 + (n%2 == 1) + (n==1)): return 1 %o A090405 else: return 0 # _Indranil Ghosh_, Mar 31 2017 %Y A090405 Cf. A000720, A080545, A090406. %K A090405 nonn,easy %O A090405 1,1 %A A090405 _Eric W. Weisstein_, Nov 29 2003