cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090421 Numbers that can be written in binary representation as concatenation of primes.

This page as a plain text file.
%I A090421 #21 Apr 21 2015 18:48:55
%S A090421 2,3,5,7,10,11,13,14,15,17,19,21,22,23,29,30,31,37,41,42,43,45,46,47,
%T A090421 53,54,55,58,59,61,62,63,67,70,71,73,78,79,81,83,85,86,87,89,90,91,93,
%U A090421 94,95,97,101,103,107,109,111,113,115,117,118,119,122,123
%N A090421 Numbers that can be written in binary representation as concatenation of primes.
%C A090421 A090418(a(n)) > 0; complement of A090419.
%C A090421 Terms in the sequence cannot end in 00, 0010, 001010, etc., and thus a(n) > 3n/2 + O(log n). - _Charles R Greathouse IV_, Apr 21 2015
%H A090421 Reinhard Zumkeller, <a href="/A090421/b090421.txt">Table of n, a(n) for n = 1..10000</a>
%o A090421 (Haskell)
%o A090421 a090421 n = a090421_list !! (n-1)
%o A090421 a090421_list = filter ((> 0) . a090418) [1..]
%o A090421 -- _Reinhard Zumkeller_, Aug 06 2012
%o A090421 (PARI) is_A090421(n)={isprime(n) || if(bittest(n,0),for(k=2,#binary(n)-2,bittest(n,k-1) && isprime(n%2^k) && is_A090421(n>>k) && return(1)), bittest(n,1) && is_A090421(n>>2))} \\ _Charles R Greathouse IV_ and _M. F. Hasler_, Apr 21 2015
%Y A090421 Cf. A004676, A007088, A090422.
%Y A090421 Cf. A000040, A090420, and A090423 are subsequences.
%K A090421 nonn,base
%O A090421 1,1
%A A090421 _Reinhard Zumkeller_, Nov 30 2003
%E A090421 Based on corrections in A090418, data recomputed by _Reinhard Zumkeller_, Aug 06 2012