This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090423 #32 May 16 2021 10:48:12 %S A090423 11,23,29,31,43,47,59,61,71,79,83,109,113,127,151,157,167,173,179,181, %T A090423 191,223,229,233,239,241,251,271,283,317,337,347,349,353,359,367,373, %U A090423 379,383,431,433,439,457,463,467,479,487,491,499,503,509,541,563,599,607 %N A090423 Primes that can be written in binary representation as concatenation of other primes. %C A090423 A090418(a(n)) > 1; subsequence of A090421. %H A090423 Reinhard Zumkeller, <a href="/A090423/b090423.txt">Table of n, a(n) for n = 1..10000</a> %e A090423 337 is 101010001 in binary, %e A090423 10 is 2, %e A090423 10 is 2, %e A090423 10001 is 17, partition is 10_10_10001, so 337 is in the sequence. %o A090423 (Python) %o A090423 # Primes = [2,...,607] %o A090423 from sympy import sieve %o A090423 primes = list(sieve.primerange(1, 608)) %o A090423 def tryPartioning(binString): # First digit is not 0 %o A090423 l = len(binString) %o A090423 for t in range(2, l-1): %o A090423 substr1 = binString[:t] %o A090423 if (int('0b'+substr1,2) in primes) or (t>=4 and tryPartioning(substr1)): %o A090423 substr2 = binString[t:] %o A090423 if substr2[0]!='0': %o A090423 if (int('0b'+substr2,2) in primes) or (l-t>=4 and tryPartioning(substr2)): %o A090423 return 1 %o A090423 return 0 %o A090423 for p in primes: %o A090423 if tryPartioning(bin(p)[2:]): %o A090423 print(p, end=',') %o A090423 (Python) %o A090423 from sympy import isprime, primerange %o A090423 def ok(p): %o A090423 b = bin(p)[2:] %o A090423 for i in range(2, len(b)-1): %o A090423 if isprime(int(b[:i], 2)) and b[i] != '0': %o A090423 if isprime(int(b[i:], 2)) or ok(int(b[i:], 2)): return True %o A090423 return False %o A090423 def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)] %o A090423 print(aupto(607)) # _Michael S. Branicky_, May 16 2021 %o A090423 (Haskell) %o A090423 a090423 n = a090423_list !! (n-1) %o A090423 a090423_list = filter ((> 1 ) . a090418 . fromInteger) a000040_list %o A090423 -- _Reinhard Zumkeller_, Aug 06 2012 %o A090423 (PARI) is_A090423(n)={isprime(n)&&for(i=2, #binary(n)-2, bittest(n, i-1)&&isprime(n%2^i)&&is_A090421(n>>i)&&return(1))} \\ _M. F. Hasler_, Apr 21 2015 %Y A090423 Cf. A090422, A000040, A004676, A007088. %K A090423 nonn,base %O A090423 1,1 %A A090423 _Reinhard Zumkeller_, Nov 30 2003 %E A090423 Corrected by _Alex Ratushnyak_, Aug 03 2012