This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090425 #29 Feb 16 2025 08:32:51 %S A090425 1,6,2,3,5,4,4,3,4,5,5,3,6,4,4,3,5,5,4,2,3,5,4,3,6,6,4,4,5,5,4,6,4,4, %T A090425 4,6,4,6,6,6,6,4,4,6,3,4,3,6,6,4,6,6,6,5,7,6,7,6,6,6,7,5,6,6,6,7,5,5, %U A090425 5,4,4,7,5,5,5,7,7,4,7,4,5,3,4,6,6,6,7,6,6,4,7,7,4,5,5,4,6,3,6,7,6,4 %N A090425 Number of iterations required for happy number A007770(n) to converge to 1. %C A090425 The count includes both the start and end. %H A090425 Reinhard Zumkeller, <a href="/A090425/b090425.txt">Table of n, a(n) for n = 1..10000</a> %H A090425 T. Cai and Xia Zhou, <a href="http://dx.doi.org/10.1216/RMJ-2008-38-6-1921">On the heights of happy numbers</a>, Rocky Mount. J. Math. 38 (6) (2008) 1921-1926. [From _R. J. Mathar_, Apr 22 2010] %H A090425 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HappyNumber.html">Happy Number</a>. %e A090425 7 is the 2nd happy number and iterated digit squarings and additions give the sequence {7,49,97,130,10,1}, so a(2)=6. %t A090425 happy[n_] := If[(list = NestWhileList[Plus @@ (IntegerDigits[#]^2) &, n, UnsameQ, All])[[-1]] == 1, Length[list] - 1, Nothing]; Array[happy, 700] (* _Amiram Eldar_, Apr 12 2022 *) %o A090425 (Haskell) %o A090425 a090425 n = snd $ until ((== 1) . fst) %o A090425 (\(u, v) -> (a003132 u, v + 1)) (a007770 n, 1) %o A090425 -- _Reinhard Zumkeller_, Aug 07 2012 %o A090425 (Python) %o A090425 from itertools import count, islice %o A090425 def A090425_gen(): # generator of terms %o A090425 for n in count(1): %o A090425 c = 1 %o A090425 while n not in {1,37,58,89,145,42,20,4,16}: %o A090425 n = sum((0, 1, 4, 9, 16, 25, 36, 49, 64, 81)[ord(d)-48] for d in str(n)) %o A090425 c += 1 %o A090425 if n == 1: %o A090425 yield c %o A090425 A090425_list = list(islice(A090425_gen(),20)) # _Chai Wah Wu_, Aug 02 2023 %Y A090425 Cf. A007770. %Y A090425 Cf. A003132. %K A090425 nonn,base %O A090425 1,2 %A A090425 _Eric W. Weisstein_, Nov 30 2003