cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090435 Triangle of signed numbers used for the computation of the column sequences of triangle A090217.

Original entry on oeis.org

1, -1, 6, 1, -48, 147, -5, 1584, -24255, 50176, 1, -1980, 121275, -1003520, 1571724, -41, 496980, -113458275, 2950635520, -16174611684, 20412000000, 45182, -3322062810, 2744728561050, -206756932157440, 3081396966348393, -12443694076800000, 13160600037440625, -1294492177294
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

A090217(n+m,m)= sum(a(m,p)*((p+4)*(p+3)*(p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A090436(m); m=1,2,..., n>=0.

Examples

			[1]; [ -1,6]; [1,-48,147]; [ -5,1584,-24255,50176]; ...
A090217(2+3,3) = 9086400 = (1*(5*4*3*2*1)^2 - 48*(6*5*4*3*2)^2 + 147*(7*6*5*4*3)^2)/100.
a(3,2)= -48 = 100*(-1)*((6*5*4*3*2)^2)/((6*5*4*3*2-5*4*3*2*1)*(7*6*5*4*3-6*5*4*3*2)).
		

Formula

a(n, m)= D(n)*((-1)^(n-m))*(fallfac(m+4, 5)^(n-1))/(product(fallfac(m+4, 5)-fallfac(r+4, 5), r=1..m-1)*product(fallfac(r+4, 5)-fallfac(m+4, 5), r=m+1..n)), with D(n) := A090436(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)