This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090440 #17 Aug 29 2019 17:25:27 %S A090440 1,24,36,12,1,1440,5760,6120,2520,456,36,1,172800,1339200,2808000, %T A090440 2420640,1025280,232920,29400,2040,72,1,36288000,471744000,1643846400, %U A090440 2381702400,1745755200,721224000,178941600,27624960,2689920,163800,6000 %N A090440 Generalized Stirling2 array (4,3). %C A090440 The row lengths for this array are [1,4,7,10,13,16,...] = A016777(n-1), n>=1. %D A090440 P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205. %D A090440 M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665. %H A090440 W. Lang, <a href="/A090440/a090440.txt">First 6 rows</a>. %F A090440 Recursion: a(n, k)=sum(binomial(3, p)*fallfac(n-1-p+k, 3-p)*a(n-1, k-p), p=0..3), n>=2, 3<=k<=3*n, a(1, 3)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle). %F A090440 a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+j-1, 3), j=1..n), p=3..k), n>=1, 3<=k<=3*n, else 0. From eq. (12) of the Blasiak et al. reference with r=4, s=3. %t A090440 ff[n_, k_] = Pochhammer[n - k + 1, k]; a[1, 3] = 1; a[n_, k_] := a[n, k] = Sum[Binomial[3, p]*ff[(n - 1 - p + k), 3 - p]*a[n - 1, k - p], {p, 0, 3} ]; a[n_ /; n < 2, _] = 0; Flatten[Table[a[n, k], {n, 1, 5}, {k, 3, 3 n}]] (* _Jean-François Alcover_, Sep 01 2011, after given recursion *) %Y A090440 Cf. A090438 (4, 2)-Stirling2. %Y A090440 Cf. A070531 (row sums), A091028 (alternating row sums). %K A090440 nonn,easy,tabf %O A090440 1,2 %A A090440 _Wolfdieter Lang_, Dec 23 2003