cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090447 Triangle of partial products of binomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 9, 9, 1, 4, 24, 96, 96, 1, 5, 50, 500, 2500, 2500, 1, 6, 90, 1800, 27000, 162000, 162000, 1, 7, 147, 5145, 180075, 3781575, 26471025, 26471025, 1, 8, 224, 12544, 878080, 49172480, 1376829440, 11014635520, 11014635520, 1, 9, 324
Offset: 0

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Examples

			[1]; [1,1]; [1,2,2]; [1,3,9,9]; ...
		

Crossrefs

Column sequences: A000027 (natural numbers), A006002, A090448-9.
Cf. A090450 (row sums), A090451 (alternating row sums).
Cf. A008949 (partial row sums in Pascal's triangle).

Programs

  • Mathematica
    a[n_, m_] := Product[Binomial[n, p], {p, 0, m}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n, m) = Product_{p=0..m} binomial(n, p), n>=m>=0, else 0. Partial row products in Pascal's triangle A007318.
a(n, m) = (Product_{p=0..m} fallfac(n, m-p))/superfac(m), n>=m>=0, else 0; with fallfac(n, m) := A008279(n, m) (falling factorials) and superfac(m) = A000178(m) (superfactorials).
a(n, m) = (Product_{p=0..m} (n-p)^(m-p))/superfac(m), n>=m>=0, with 0^0:=0, else 0.

A090451 Alternating row sums of triangle A090447.

Original entry on oeis.org

1, 0, 1, -2, 21, -454, 25285, -3606504, 1328522713, -1270747453940, 3169192850406441, -20676520009454537480, 353872602524737587995341, -15925173912641846013871947522, 1888348697181821236021540428910349, -591053910458037676348857289166882470064
Offset: 0

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Formula

a(n)=sum(A090447(n, m)*(-1)^m, m=0..n), n>=0.
A090450 (row sums).
Showing 1-2 of 2 results.