cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090452 Scaled array A078740 ((3,2)-Stirling2).

Original entry on oeis.org

1, 1, 3, 2, 1, 7, 16, 15, 5, 1, 12, 51, 105, 114, 63, 14, 1, 18, 118, 396, 771, 910, 644, 252, 42, 1, 25, 230, 1110, 3235, 6083, 7580, 6240, 3270, 990, 132, 1, 33, 402, 2600, 10365, 27483, 50464, 65331, 59625, 37620, 15642, 3861, 429, 1, 42, 651, 5390, 27825, 97188
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Comments

This scaled Stirling2 array will be called s2_{3,2}(n,m).
The sequence of row lengths is [1,3,5,7,...]=A005408(n-1).
The generating function for the sequence from column no. m is G(m,x)=(x^ceiling(m/2))*P(m,x)/(1-x)^(2*m-3) with the row polynomials of array A091029(m,k).
The generating functions of the column sequences obey the hypergeometric differential-difference eq.:x*(1-x)*G''(m,x) + 2*(1-m*x)*G'(m,x) - m*(m-1)*G(m,x) = 2*m*x*G'(m-1,x) + 2*m*(m-1)*G(m-1,x) + m*(m-1)*G(m-2,x), m>=3; with G(2,x)=x/(1-x) and G(1,x)=0. The primes denote differentiation w.r.t. x.

Examples

			Triangle begins:
  [1];
  [1,3,2];
  [1,7,16,15,5];
  [1,12,51,105,114,63,14];
  ...
		

Crossrefs

a(n, 2*n)=A000108(n) (Catalan), n>=1, a(n, 2*n-1)=3*A002054(n-1), n>=2, a(n, 2*n-2)=A091031(n), n>=2.
The column sequences (without leading zeros) are: A000012 (powers of 1), A055998, A090453-4, A091026-7, etc.
Cf. A090442 (row sums). The alternating row sums are 0 except for row n=1 which gives 1.

Programs

Formula

a(n, m) = (m!/((n+1)!*n!))*A078740(n, m), n>=1, 2<= m <=2*n.
Recursion: a(n, m) = ((n+m-1)*(n+m-2)*a(n-1, m)+2*(n+m-2)*m*a(n-1, m-1)+m*(m-1)*a(n-1, m-2))/((n+1)*n), n>=2, 2<=m<=2*n, a(1, 2)=1, a(n, 0) := 0, a(n, 1) := 0 (from the recursion of array A078740).