cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090466 Regular figurative or polygonal numbers of order greater than 2.

This page as a plain text file.
%I A090466 #105 Feb 16 2025 08:32:51
%S A090466 6,9,10,12,15,16,18,21,22,24,25,27,28,30,33,34,35,36,39,40,42,45,46,
%T A090466 48,49,51,52,54,55,57,58,60,63,64,65,66,69,70,72,75,76,78,81,82,84,85,
%U A090466 87,88,90,91,92,93,94,95,96,99,100,102,105,106,108,111,112,114,115,117,118
%N A090466 Regular figurative or polygonal numbers of order greater than 2.
%C A090466 The sorted k-gonal numbers of order greater than 2. If one were to include either the rank 2 or the 2-gonal numbers, then every number would appear.
%C A090466 Number of terms less than or equal to 10^k for k = 1,2,3,...: 3, 57, 622, 6357, 63889, 639946, 6402325, 64032121, 640349979, 6403587409, 64036148166, 640362343980, ..., . - _Robert G. Wilson v_, May 29 2014
%C A090466 The n-th k-gonal number is 1 + k*n(n-1)/2 - (n-1)^2 = A057145(k,n).
%C A090466 For all squares (A001248) of primes p >= 5 at least one a(n) exists with p^2 = a(n) + 1. Thus the subset P_s(3) of rank 3 only is sufficient. Proof: For p >= 5, p^2 == 1 (mod {3,4,6,8,12,24}) and also P_s(3) + 1 = 3*s - 2 == 1 (mod 3). Thus the set {p^2} is a subset of {P_s(3) + 1}; Q.E.D. - _Ralf Steiner_, Jul 15 2018
%C A090466 For all primes p > 5, at least one polygonal number exists with P_s(k) + 1 = p when k = 3 or 4, dependent on p mod 6. - _Ralf Steiner_, Jul 16 2018
%C A090466 Numbers m such that r = (2*m/d - 2)/(d - 1) is an integer for some d, where 2 < d < m is a divisor of 2*m. If r is an integer, then m is the d-th (r+2)-gonal number. - _Jianing Song_, Mar 14 2021
%D A090466 Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.
%H A090466 Robert G. Wilson v, <a href="/A090466/b090466.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms are from T. D. Noe)
%H A090466 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FigurateNumber.html">Figurate Number</a>
%H A090466 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>
%F A090466 Integer k is in this sequence iff A176774(k) < k. - _Max Alekseyev_, Apr 24 2018
%p A090466 isA090466 := proc(n)
%p A090466     local nsearch,ksearch;
%p A090466     for nsearch from 3 do
%p A090466         if A057145(nsearch,3) > n then
%p A090466             return false;
%p A090466         end if;
%p A090466         for ksearch from 3 do
%p A090466             if A057145(nsearch,ksearch) = n then
%p A090466                 return true;
%p A090466             elif A057145(nsearch,ksearch) > n then
%p A090466                 break;
%p A090466             end if;
%p A090466         end do:
%p A090466     end do:
%p A090466 end proc:
%p A090466 for n from 1 to 1000 do
%p A090466     if isA090466(n) then
%p A090466         printf("%d,",n) ;
%p A090466     end if;
%p A090466 end do: # _R. J. Mathar_, Jul 28 2016
%t A090466 Take[Union[Flatten[Table[1+k*n (n-1)/2-(n-1)^2,{n,3,100},{k,3,40}]]],67] (* corrected by _Ant King_, Sep 19 2011 *)
%t A090466 mx = 150; n = k = 3; lst = {}; While[n < Floor[mx/3]+2, a = PolygonalNumber[n, k]; If[a < mx+1, AppendTo[ lst, a], (n++; k = 2)]; k++]; lst = Union@ lst (* _Robert G. Wilson v_, May 29 2014 and updated Jul 23 2018; PolygonalNumber requires version 10.4 or higher *)
%o A090466 (PARI) list(lim)=my(v=List()); lim\=1; for(n=3,sqrtint(8*lim+1)\2, for(k=3,2*(lim-2*n+n^2)\n\(n-1), listput(v, 1+k*n*(n-1)/2-(n-1)^2))); Set(v); \\ _Charles R Greathouse IV_, Jan 19 2017
%o A090466 (PARI) is(n)=for(s=3,n\3+1,ispolygonal(n,s)&&return(s)); \\ _M. F. Hasler_, Jan 19 2017
%o A090466 (PARI) isA090466(m) = my(v=divisors(2*m)); for(i=3, #v, my(d=v[i]); if(d==m, return(0)); if((2*m/d - 2)%(d - 1)==0, return(1))); 0 \\ _Jianing Song_, Mar 14 2021
%Y A090466 Cf. A057145, A001248, A177028 (A342772, A342805), A177201, A316676, A364693 (characteristic function).
%Y A090466 Complement is A090467.
%Y A090466 Sequence A090428 (excluding 1) is a subsequence of this sequence. - _T. D. Noe_, Jun 14 2012
%Y A090466 Other subsequences: A324972 (squarefree terms), A324973, A342806, A364694.
%Y A090466 Cf. also A275340.
%K A090466 easy,nonn
%O A090466 1,1
%A A090466 _Robert G. Wilson v_, Dec 01 2003
%E A090466 Verified by _Don Reble_, Mar 12 2006