A090481 Primes p such that tau(p-1)+tau(p+1) is larger than for any previous term. (Smallest prime sandwiched between more composite numbers.)
2, 3, 5, 7, 11, 17, 19, 29, 41, 71, 179, 181, 239, 419, 701, 839, 881, 1259, 1871, 2161, 2521, 4159, 5039, 7561, 10079, 13441, 13859, 20161, 22679, 30241, 35281, 45361, 55439, 65519, 110879, 138599, 151201, 166319, 226799, 262079, 327599, 332641
Offset: 1
Keywords
Examples
17 follows 11 and 13 is not a term as tau(10) + tau(12) = tau(12) + tau(14) = 10.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
a = {}; t = 0; Do[p = Prime[n]; s = DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1]; If[s > t, t = s; AppendTo[a, p]], {n, 1, 10^5}]; a (* Robert G. Wilson v, Dec 04 2003 *)
Extensions
More terms from Robert G. Wilson v, Dec 04 2003