This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A090493 #67 Aug 17 2021 02:23:51 %S A090493 0,68,39,34,19,20,18,28,24,0,23,22,22,21,12,17,14,21,17,51,17,18,14, %T A090493 19,11,18,13,11,12,39,11,14,16,14,19,10,13,14,17,34,11,17,13,16,15,11, %U A090493 12,12,9,18,16,11,13,10,12,7,13,11,11,20,14,18,13,14,10,13,10,9,11,18,15 %N A090493 Least k such that n^k contains all the digits from 0 through 9, or 0 if no such k exists. %C A090493 Note that the values of n for which a(n) = 1 have density 1. %C A090493 Is it known that a(n)=0 only for n a power of 10? - _Christopher J. Smyth_, Aug 21 2014 %C A090493 a(n) >= ceiling(log_n(10)*9), whenever a(n)>0. This is because in order for an integer to have 10 digits its base-10 magnitude must be at least 9. - _Ely Golden_, Sep 06 2017 %H A090493 Seiichi Manyama, <a href="/A090493/b090493.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe) %H A090493 Ely Golden, <a href="/A090493/a090493.py.txt">Python program to generate a(n)</a> %F A090493 a(10^e) = 0; a(m^e) = a(m)/e for e dividing a(m). - _Reinhard Zumkeller_, Dec 06 2004 %e A090493 a(5)=19: 5^19 = 19073486328125. %p A090493 a:= proc(n) local k; %p A090493 if n = 10^ilog10(n) then return 0 fi; %p A090493 for k from 1 do %p A090493 if nops(convert(convert(n^k,base,10),set))=10 then return k fi %p A090493 od %p A090493 end proc: %p A090493 seq(a(n),n=1..100); # _Robert Israel_, Aug 20 2014 %t A090493 Table[If[IntegerQ@ Log10[n], 0, SelectFirst[Range[#, # + 100] &@ Ceiling[9 Log[n, 10]], NoneTrue[DigitCount[n^#], # == 0 &] &]], {n, 71}] (* _Michael De Vlieger_, Sep 06 2017 *) %o A090493 (PARI) a(n) = if (n == 10^valuation(n, 10), return (0)); k=1; while(#vecsort(digits(n^k),,8)!=10, k++); k; \\ _Michel Marcus_, Aug 20 2014 %o A090493 (Python) %o A090493 def a(n): %o A090493 s = str(n) %o A090493 if n == 1 or (s.count('0')==len(s)-1 and s.startswith('1')): %o A090493 return 0 %o A090493 k = 1 %o A090493 count = 0 %o A090493 while count != 10: %o A090493 count = 0 %o A090493 for i in range(10): %o A090493 if str(n**k).count(str(i)) == 0: %o A090493 count += 1 %o A090493 break %o A090493 if count: %o A090493 k += 1 %o A090493 else: %o A090493 return k %o A090493 n = 1 %o A090493 while n < 100: %o A090493 print(a(n), end=', ') %o A090493 n += 1 %o A090493 # _Derek Orr_, Aug 20 2014 %Y A090493 Cf. A020665, A062518, A171102. %Y A090493 Exponents of powers of k that contain all ten decimal digits: A130694 (k=2), A236673 (k=3), A284670 (k=5), A284672 (k=7). %K A090493 base,nonn %O A090493 1,2 %A A090493 _Amarnath Murthy_, Dec 03 2003 %E A090493 More terms from _Reinhard Zumkeller_, Dec 06 2004 %E A090493 Corrected a(15), a(17), a(38), a(48), a(56) and a(65). (For each of these terms, the only 1 in n^k is the first digit.) - _Jon E. Schoenfield_, Sep 20 2008