cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090494 Product_{j=1..n} Product_{k=1..n} lcm(j,k).

This page as a plain text file.
%I A090494 #9 Apr 11 2013 03:59:28
%S A090494 1,1,8,7776,1146617856,1289945088000000000,
%T A090494 46798828032806092800000000000,
%U A090494 2350577043461005964030008507760640000000000000,8206262459636402163263383676462776103575725539328000000000000000,2746781358330240881921653545637784861521126603512175621574459373964492800000000000000000
%N A090494 Product_{j=1..n} Product_{k=1..n} lcm(j,k).
%F A090494 Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Then the prime factorization of a(n) appears to be given by the formula ordp(a(n),p)= sum_{k >= 1} [(2*(p^k)-1)*floor((n/(p^k)))^2] + 2*sum_{k >= 1} [floor(n/(p^k))*mod(n,p^k)], for each prime p. See the comments sections of A092143, A092287, A129365 and A129454 for similar conjectural prime factorizations. - _Peter Bala_, Apr 23 2007
%p A090494 f := n->mul(mul(lcm(j,k),k=1..n),j=1..n);
%Y A090494 Cf. A018806.
%Y A090494 Cf. A092143, A092287, A129365, A129454.
%K A090494 nonn
%O A090494 0,3
%A A090494 _N. J. A. Sloane_, Feb 03 2004